Inhibition of triple-negative breast cancer growth via delphinidin-mediated suppression of the JAK2/STAT3/PD-L1 pathway

  • Xiaoping Yu Chengdu University
  • Xiaolong Song Chengdu Medical college
  • Jiali Yan Chengdu Medical college
  • Ziting Xiong Chengdu Medical college
  • Lujie Zheng Chengdu Medical college
  • Yan Luo Chengdu Medical college
  • Fengcheng Deng Chengdu Seventh People’s Hospital
  • Yanfeng Zhu Chengdu Medical college
Keywords: delphinidin, TNBC, JAK2, STAT3, PD-L1, exosome, phytochemicals

Abstract

Background: Breast cancer is a leading cause of cancer-related mortality among women globally, with triple-negative breast cancer (TNBC) being particularly aggressive. Delphinidin (Dp), an anthocyanin monomer, has shown promising health benefits.

Objective: This study investigates the effects of Dp on TNBC and aims to elucidate its specific mechanisms of action.

Design: We utilized cell counting kit-8 (CCK-8) assays, colony formation assays, and scratch assays to evaluate the influence of Dp on the proliferation and migration of TNBC cells. Flow cytometry was employed to analyze programmed cell death-ligand 1 (PD-L1) and Cluster of Differentiation 69 expression, while Western blotting assessed the levels of PD-L1, Janus Kinase 2 (JAK2), Signal Transducer and Activator of Transcription 3 (STAT3), p-JAK2, p-STAT3, and exosomal marker proteins. Additionally, enzyme-linked immunosorbent assay (ELISA) was conducted to measure concentrations of PD-L1, interferon-γ (IFN-γ), and tumor necrosis factor-β (TNF-β).

Results: Dp effectively inhibited TNBC cell proliferation and migration, as evidenced by CCK-8, colony formation, and scratch assays. Flow cytometry and Western blot analysis indicated a reduction in PD-L1 expression in TNBC cells. Meanwhile, we successfully isolated TNBC cell-derived exosomes, with ELISA experiments showing a decrease in PD-L1 expression in these exosomes following Dp treatment. In a co-culture system with TNBC and Jurkat cells, Dp enhanced Cluster of Differentiation 69 expression and reactivated Jurkat cells, resulting in increased secretion of IFN-γ and TNF-β. Additionally, Dp significantly reduced the p-JAK2/JAK2 and p-STAT3/STAT3 ratios in TNBC cells.

Conclusion: Dp may exert its anti-TNBC effects by downregulating PD-L1 expression in TNBC cells and exosomes through the JAK2/STAT3 signaling pathway, potentially restoring T cell activity and modifying the tumor microenvironment.

Downloads

Download data is not yet available.

References


1.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–49. doi: 10.3322/caac.21660


2.
Leon-Ferre RA, Goetz MP. Advances in systemic therapies for triple negative breast cancer. BMJ 2023; 381: e071674. doi: 10.1136/bmj-2022-071674


3.
Kudelova E, Smolar M, Holubekova V, Hornakova A, Dvorska D, Lucansky V, et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Mol Sci 2022; 23(23): 14937. doi: 10.3390/ijms232314937


4.
Bianchini G, Licata L, Viale G, Gianni L. Neoadjuvant immunotherapy in triple-negative breast cancer: lesson learnt, remaining questions. Ann Oncol 2022; 33(11): 1091–3. doi: 10.1016/j.annonc.2022.08.088


5.
Qin G, Wang X, Ye S, Li Y, Chen M, Wang S, et al. NPM1 upregulates the transcription of PD-L1 and suppresses T cell activity in triple-negative breast cancer. Nat Commun 2020; 11(1): 1669. doi: 10.1038/s41467-020-15364-z


6.
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977. doi: 10.1126/science.aau6977


7.
Zhang H-G, Grizzle WE. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol 2014; 184(1): 28–41. doi: 10.1016/j.ajpath.2013.09.027


8.
Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018; 560(7718): 382–6. doi: 10.1038/s41586-018-0392-8


9.
Poggio M, Hu T, Pai C-C, Chu B, Belair CD, Chang A, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 2019; 177(2): 414–27.e13. doi: 10.1016/j.cell.2019.02.016


10.
Koss-Mikołajczyk I, Bartoszek A. Relationship between chemical structure and biological activity evaluated in vitro for six anthocyanidins most commonly occurring in edible plants. Molecules 2023; 28(16): 6156. doi: 10.3390/molecules28166156


11.
Wu G, Zhao Z, Hu J, Li Y, Sun J, Bai W. Optimized synthesis and antioxidant activity of anthocyanins delphinidin-3-O-glucoside and petunidin-3-O-glucoside. J Agric Food Chem 2024; 72(26): 15005–12. doi: 10.1021/acs.jafc.4c03237


12.
Mazewski C, Kim MS, Gonzalez de Mejia E. Anthocyanins, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside, inhibit immune checkpoints in human colorectal cancer cells in vitro and in silico. Sci Rep 2019; 9(1): 11560. doi: 10.1038/s41598-019-47903-0


13.
Concha-Benavente F, Srivastava RM, Trivedi S, Lei Y, Chandran U, Seethala RR, et al. Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFNγ that induce PD-L1 expression in head and neck cancer. Cancer Res 2016; 76(5): 1031–43. doi: 10.1158/0008-5472.CAN-15-2001


14.
Villarino AV, Kanno Y, Ferdinand JR, O’Shea JJ. Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol 2015; 194(1): 21–7. doi: 10.4049/jimmunol.1401867


15.
Zhang Z, Pan Y, Zhao Y, Ren M, Li Y, Lu G, et al. Delphinidin modulates JAK/STAT3 and MAPKinase signaling to induce apoptosis in HCT116 cells. Environ Toxicol 2021; 36(8): 1557–66. doi: 10.1002/tox.23152


16.
Berendsen HJC, Van Der Spoel D, Van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Commun 1995; 91(1–3): 43–56. doi: 10.1016/0010-4655(95)00042-E


17.
Wu J, Ge F, Zhu L, Liu N. Potential toxic mechanisms of neonicotinoid insecticides in rice: inhibiting auxin-mediated signal transduction. Environ Sci Technol 2023; 57(12): 4852–62. doi: 10.1021/acs.est.2c09352


18.
Kawata M, Nagashima U. Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity. Chem Phys Lett 2001; 340(1–2): 165–72. doi: 10.1016/S0009-2614(01)00393-1


19.
Carretero-González R, Kevrekidis PG, Kevrekidis IG, Maroudas D, Frantzeskakis DJ. A Parrinello–Rahman approach to vortex lattices. Phys Lett A 2005; 341(1–4): 128–34. doi: 10.1016/j.physleta.2005.04.046


20.
Yun J-M, Afaq F, Khan N, Mukhtar H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol Carcinog 2009; 48(3): 260–70. doi: 10.1002/mc.20477


21.
Kang H-M, Park B-S, Kang H-K, Park H-R, Yu S-B, Kim I-R. Delphinidin induces apoptosis and inhibits epithelial-to-mesenchymal transition via the ERK/p38 MAPK-signaling pathway in human osteosarcoma cell lines. Environ Toxicol 2018; 33(6): 640–9. doi: 10.1002/tox.22548


22.
Ozbay T, Nahta R. Delphinidin inhibits HER2 and Erk1/2 signaling and suppresses growth of HER2-overexpressing and triple negative breast cancer cell lines. Breast Cancer (Auckl) 2011; 5: 143–54. doi: 10.4137/BCBCR.S7156


23.
Rak J. Extracellular vesicles – biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol 2013; 4: 21. doi: 10.3389/fphar.2013.00021


24.
Mahoney KM, Freeman GJ, McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 2015; 37(4): 764–82. doi: 10.1016/j.clinthera.2015.02.018


25.
Jing L, Lin J, Yang Y, Tao L, Li Y, Liu Z, et al. Quercetin inhibiting the PD-1/PD-L1 interaction for immune-enhancing cancer chemopreventive agent. Phytother Res 2021; 35(11): 6441–51. doi: 10.1002/ptr.7297


26.
He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics 2018; 8(1): 237–55. doi: 10.7150/thno.21945


27.
Niu M, Liu Y, Yi M, Jiao D, Wu K. Biological characteristics and clinical significance of soluble PD-1/PD-L1 and exosomal PD-L1 in cancer. Front Immunol 2022; 13: 827921. doi: 10.3389/fimmu.2022.827921


28.
Theodoraki M-N, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin Cancer Res 2018; 24(4): 896–905. doi: 10.1158/1078-0432.CCR-17-2664


29.
Li C, Li C, Zhi C, Liang W, Wang X, Chen X, et al. Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J Transl Med 2019; 17(1): 355. doi: 10.1186/s12967-019-2101-2


30.
Wen J, Chang X, Bai B, Gao Q, Zhao Y. Orexin A suppresses the expression of exosomal PD-L1 in colon cancer and promotes T cell activity by inhibiting JAK2/STAT3 signaling pathway. Dig Dis Sci 2022; 67(6): 2173–81. doi: 10.1007/s10620-021-07077-0


31.
Li C-W, Lim S-O, Xia W, Lee H-H, Chan L-C, Kuo C-W, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 2016; 7: 12632. doi: 10.1038/ncomms12632


32.
Gholijani N, Gharagozloo M, Kalantar F, Ramezani A, Amirghofran Z. Modulation of cytokine production and transcription factors activities in human Jurkat T cells by thymol and carvacrol. Adv Pharm Bull 2015; 5(Suppl 1): 653–60. doi: 10.15171/apb.2015.089


33.
Zagorski JW, Turley AE, Dover HE, VanDenBerg KR, Compton JR, Rockwell CE. The Nrf2 activator, tBHQ, differentially affects early events following stimulation of Jurkat cells. Toxicol Sci 2013; 136(1): 63–71. doi: 10.1093/toxsci/kft172


34.
Xie C, Zhou X, Liang C, Li X, Ge M, Chen Y, et al. Correction to: Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. J Exp Clin Cancer Res 2021; 40(1): 349. doi: 10.1186/s13046-021-02142-y


35.
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6(1): 402. doi: 10.1038/s41392-021-00791-1


36.
Liu X, Wang J, Wang H, Yin G, Liu Y, Lei X, et al. REG3A accelerates pancreatic cancer cell growth under IL-6-associated inflammatory condition: involvement of a REG3A-JAK2/STAT3 positive feedback loop. Cancer Lett 2015; 362(1): 45–60. doi: 10.1016/j.canlet.2015.03.014


37.
Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu Z, et al. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol 2016; 49(4): 1360–8. doi: 10.3892/ijo.2016.3632


38.
Xu L, Chen X, Shen M, Yang D-R, Fang L, Weng G, et al. Inhibition of IL-6-JAK/Stat3 signaling in castration-resistant prostate cancer cells enhances the NK cell-mediated cytotoxicity via alteration of PD-L1/NKG2D ligand levels. Mol Oncol 2018; 12(3): 269–86. doi: 10.1002/1878-0261.12135


39.
Jha A, Alam M, Kashyap T, Nath N, Kumari A, Pramanik KK, et al. Crosstalk between PD-L1 and Jak2-Stat3/MAPK-AP1 signaling promotes oral cancer progression, invasion and therapy resistance. Int Immunopharmacol 2023; 124(Pt A): 110894. doi: 10.1016/j.intimp.2023.110894
Published
2024-12-31
How to Cite
Yu X., Song X., Yan J., Xiong Z., Zheng L., Luo Y., Deng F., & Zhu Y. (2024). Inhibition of triple-negative breast cancer growth via delphinidin-mediated suppression of the JAK2/STAT3/PD-L1 pathway. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10974
Section
Original Articles