Monosodium L-glutamate and fats change free fatty acid concentrations in intestinal contents and affect free fatty acid receptors express profile in growing pigs

  • Yun Su
  • Zemeng Feng
  • Yumin He
  • Lingling Hong
  • Gang Liu
  • Tiejun Li
  • Yulong Yin
Keywords: Monosodium L-glutamate; Fat; Free fatty acid; intestinal luminal; Free fatty acids receptors

Abstract

Background: Obesity and its related metabolic syndrome continue to be major public health problems. Monosodium L-glutamate (MSG) may cause metabolic diseases such as obesity. Meanwhile, the Chinese population has undergone rapid transition to a high-fat diet. There is little information available on the effect of MSG and fat alone, or in combination, on free fatty acids (FFAs), lipid metabolism and FFA receptors.

Objective: The aim of this study was to evaluate the effects of MSG and fat alone, or in combination, on intestinal luminal FFAs and expression of gastrointestinal FFA receptors. The aim was also to test whether dietary fat and/or MSG could affect expression of genes related to fatty acid metabolism.

Design: A total of 32 growing pigs were used and fed with four iso-nitrogenous and iso-caloric diets. Pigs in the four treatments received diets with one of two fat concentrations levels (4.4 and 9.4%) and one of two MSG dose levels (0 and 3%), in which most of the fat were brought by soybean oil. The concentration of short chain fatty acids (SCFAs) in cecum and colon, long chain fatty acids (LCFAs) in ileum, cecum and colon, and FFAs receptors expression in hypothalamus and gastrointestinal tract were determined.

Results: MSG and/or fat changed intestinal luminal SCFAs, levels of LCFAs, and showed an antagonistic effect on most of LCFAs. Simultaneously, MSG and/or fat decreased the expression of FFA receptors in hypothalamus and gastrointestinal tract. MSG and/or fat promoted fat deposition through different ways in back fat.

Conclusion: Our results support that MSG and/or fat can alter intestinal luminal FFAs composition and concentration, especially LCFAs, in addition, the expression of FFA receptors in ileum and hypothalamus could be decreased. Moreover, MSG and/or fat can promote protein deposition in back fat, and affect the distribution and metabolism of fatty acids in the body tissues and the body’s ability to perceive fatty acids; these results provide a reference for the occurrence of fat deposition and obesity caused by high-fat and monosodium glutamate diet.

Downloads

Download data is not yet available.

References


  1. Cederberg H, Stancakova A, Kuusisto J, Laakso M, Smith U. Family history of type 2 diabetes increases the risk of both obesity and its complications: is type 2 diabetes a disease of inappropriate lipid storage? J Intern Med 2015; 277(5): 540–51. doi: 10.1111/joim.12289

  2. Rizk NM, Yousef M. Association of lipid profile and waist circumference as cardiovascular risk factors for overweight and obesity among school children in Qatar. Diabet Metab Syndr Obes 2012; 5: 425–32. doi: 10.2147/DMSO.S39189

  3. Song L, Lu J, Song H, Liu H, Zhang W, Zhao H. Study on the relationship between obesity and lipid metabolism in children and adolescent in yinchuan. J Hyg Res 2014; 43(5): 779–83. Available form: http://kns.cnki.net/kns/detail/detail.aspx?FileName=WSYJ201405015&DbName=CJFQ2014

  4. Sandoe P, Palmer C, Corr S, Astrup A, Bjornvad CR. Canine and feline obesity: a one health perspective. Vet Rec 2014; 175(24): 610–16. doi: 10.1136/vr.g7521

  5. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol 2016; 15(9): 913–24. doi: 10.1016/S1474-4422(16)30073-4

  6. Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev 2013; 93(1): 359–404. doi: 10.1152/physrev.00033.2011

  7. Kucuk BF, Baloglu O, Heise S, Brockmann G, Severcan F. Triglyceride dependent differentiation of obesity in adipose tissues by FTIR spectroscopy coupled with chemometrics. J Biophotonics. 2017;10(10): 1345–55. doi: 10.1002/jbio.201600223

  8. Finkelstein J, Heemels MT, Shadan S, Weiss U. Lipids in health and disease. Nature 2014; 510(7503): 47. doi: 10.1038/510047a

  9. Koutsari C, Jensen MD. Free fatty acid metabolism in human obesity. J Lipid Res 2006; 47(8): 1643–50. doi: 10.1194/jlr.R600011-JLR200

  10. Aristizabal JC, Gonzà lez-Zapata LI, Estrada-Restrepo A, Monsalve-Alvarez J, Restrepo-Mesa SL, Gaitã ND. Concentrations of plasma free palmitoleic and dihomo-gamma linoleic fatty acids are higher in children with abdominal obesity. Nutrients 2018; 10(1): 31. doi: 10.3390/nu10010031

  11. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc 2003; 62(1): 67–72. doi: 10.1079/PNS2002207

  12. Hamilton JA. Transport of fatty acids across membranes by the diffusion mechanism. Prostaglandins Leukot Essent Fatty Acids 1999; 60(5–6): 291–7. doi: 10.1016/S0952-3278(99)80002-7

  13. Hamilton JA, Kamp F. How are free fatty acids transported in membranes? Is it by proteins or by free diffusion through the lipids? Diabetes 1999; 48(12): 2255–69. doi: 10.2337/diabetes.48.12.2255

  14. Hara T, Kimura I, Inoue D, Ichimura A, Hirasawa A. Free fatty acid receptors and their role in regulation of energy metabolism. Rev Physiol Bioch P 2013; 164: 77–116. doi: 10.1007/112_2013_13

  15. Mitsui R, Ono S, Karaki S, Kuwahara A. Neural and non-neural mediation of propionate-induced contractile responses in the rat distal colon. Neurogastroent Motil 2005; 17(4): 585–94. doi: 10.1111/j.1365-2982.2005.00669.x

  16. Mitsui R, Ono S, Karaki SI, Kuwahara A. Propionate modulates spontaneous contractions via enteric nerves and prostaglandin release in the rat distal colon. Jpn J Physiol 2005; 55(6): 331–38. doi: 10.2170/jjphysiol.RP000205

  17. Ono S, Karaki S, Kuwahara A. Short-chain fatty acids decrease the frequency of spontaneous contractions of longitudinal muscle via enteric nerves in rat distal colon. Jpn J Physiol 2004; 54(5): 483–93. doi: 10.2170/jjphysiol.54.483

  18. Zumbrun SD, Melton-Celsa AR, Smith MA, Gilbreath JJ, Merrell DS, O’Brien AD. Dietary choice affects Shiga toxin-producing Escherichia coli (STEC) O157:H7 colonization and disease. Proc Natl Acad Sci U S A 2013; 110(23): E2126–33. doi: 10.4161/gmic.26263

  19. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54(9): 2325–40. doi: 10.1194/jlr.r036012

  20. Fluitman KS, Clercq NCD, Keijser BJF, Visser M, Nieuwdorp M, Ijzerman RG. The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. Exp Rev Endocrinol Metab 2017; 12(3): 1–12. doi: 10.1080/17446651.2017.1318060

  21. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341(6145): 569–73. doi: 10.1126/science.1241165

  22. Sclafani A, Zukerman S, Ackroff K. GPR40 and GPR120 fatty acid sensors are critical for postoral but not oral mediation of fat preferences in the mouse. Am J Physiol Regul Integr Comp Physiol 2013; 305(12): R1490–97. doi: 10.1152/ajpregu.00440.2013

  23. Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 2008; 59(Suppl 2): 251–62. doi: 10.2170/physiolsci.RP006108

  24. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003; 278(28): 25481–9. doi: 10.1074/jbc.M301403200

  25. Kaji L, Karaki S, Kuwahara A. Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion 2014; 89(1): 31–6. doi: 10.1159/000356211

  26. Ohira H, Tsutsui W, Fujioka Y. Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb 2017; 24(7): 660–72. doi: 10.5551/jat.RV17006

  27. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan WQ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010; 142(5): 687–98. doi: 10.1016/j.cell.2010.07.041

  28. Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 2012; 483(7389): 350–54. doi: 10.1038/nature10798

  29. Hara T, Hirasawa A, Ichimura A, Kimura I, Tsujimoto G. Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci-Us 2011; 100(9): 3594–601. doi: 10.1002/jps.22639

  30. Beyreuther K, Biesalski HK, Fernstrom J, Grimm P, Hammes WP, Heinemann U, et al. Consensus meeting: monosodium glutamate – an update. Eur J Clin Nutr 2007; 61(3): 304–13. doi: 10.1038/sj.ejcn.1602526

  31. Narukawa M, Morita K, Uemura M, Kitada R, Oh SH, Hayashi Y. Nerve and dehavioral responses of mice to various umami substances. Biosci Biotech Bioch 2011; 75(11): 2125–31. doi: 10.1271/bbb.110401

  32. Walker R, Lupien JR. The safety evaluation of monosodium glutamate. J Nutr 2000; 130(4 Suppl): 1049S–52S. doi: 10.1046/j.1365-277x.2000.00221.x

  33. Schaumbu H, Mccaghre TJ, Menken M, Migden W, Rose EK, Rath J, et al. Chinese-restaurant syndrome. N Engl J Med 1968; 278(20): 1122–4. doi: 10.1056/NEJM196805162782015

  34. Furuya DT, Poletto AC, Favaro RR, Martins JO, Zorn TM, Machado UF. Anti-inflammatory effect of atorvastatin ameliorates insulin resistance in monosodium glutamate-treated obese mice. Metabolism 2010; 59(3): 395–99. doi: 10.1016/j.metabol.2009.08.011

  35. Kazmi Z, Fatima I, Perveen S, Malik SS. Monosodium glutamate: review on clinical reports. Int J Food Properties 2017; 20(S2): S1807–15. doi: 10.1080/10942912.2017.1295260

  36. He K, Zhao L, Daviglus ML, Dyer AR, Van Horn L, Garside D, et al. Association of monosodium glutamate intake with overweight in Chinese adults: the INTERMAP Study. Obesity 2008; 16(8): 1875–80. doi: 10.1038/oby.2008.274

  37. Chen G, Zhang J, Zhang Y, Liao P, Li T, Chen L, et al. Oral MSG administration alters hepatic expression of genes for lipid and nitrogen metabolism in suckling piglets. Amino Acids 2014; 46(1): 245–50. doi: 10.1007/s00726-013-1615-9

  38. Wang Y, Zhu Y, Ruan K, Wei H, Feng Y. MDG-1, a polysaccharide from Ophiopogon japonicus, prevents high fat diet-induced obesity and increases energy expenditure in mice. Carbohydr Polym 2014; 114: 183–89. doi: 10.1016/j.carbpol.2014.08.013

  39. Yan XC, Wang YZ, Xu ZR. Regulation of fatty acid synthase (FAS) gene expression in animals. Acta Zoonut Rim Sin 2002; 2(14): 1–4. Available form: http://kns.cnki.net/kns/detail/detail.aspx?FileName=DWYX200202000&DbName=CJFQ2002

  40. Semenkovich C. Regulation of fatty acid synthase (FAS). Prog Lipid Res 1997; 36(1): 43–53. doi: 10.1016/S0163-7827(97)00003-9

  41. Smith S, Witkowski A, Joshi AK. Structural and functional organization of the animal fatty acid synthase. Prog Lipid Res 2003; 42(4): 289–317. doi: 10.1016/S0163-7827(02)00067-X

  42. Belfrage P, Fredrikson G, Stralfors P, Tornqvist H. Lipases. In: Borgström B, Brockman HL, eds. Adipose tissue lipases: a msterdam. Elsevier, Amsterdam; 1984; 365–416. Available form: http://scholar.google.com/scholar_lookup?title=Adipose%20tissue%20lipases&author=P.%20Belfrage&author=G.%20Fredrikson&author=P.%20Str

  43. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014; 514(7521): 181–6. doi: 10.1038/nature13793

  44. Fan J, Han F, Liu H. Challenges of big data analysis. Natl Sci Rev 2014; 1(2): 293–314. doi: 10.1093/nsr/nwt032

  45. VanderLaan JW, Brightwell J, McAnulty P, Ratky J, Stark C, Project R. Regulatory acceptability of the minipig in the development of pharmaceuticals, chemicals and other products. J Pharmacol Toxicol 2010; 62(3): 184–95. doi: 10.1016/j.vascn.2010.05.005

  46. Feng ZM, Zhou XL, Wu F, Yao K, Kong XF, Li TJ, et al. Both dietary supplementation with monosodium L-glutamate and fat modify circulating and tissue amino acid pools in growing pigs, but with little interactive effect. PLoS One 2014; 9(1): e84533. doi: 10.1371/journal.pone.0084533

  47. Kong XF, Zhou XL, Feng ZM, Li FN, Ji YJ, Tan BE, et al. Dietary supplementation with monosodium l-glutamate modifies lipid composition and gene expression related to lipid metabolism in growing pigs fed a normal- or high-fat diet. Livestock Science 2015; 180: 247–52. doi: 10.1016/j.livsci.2015.06.023

  48. Feng Z, Li T, Wu C, Tao L, Blachier F, Yin Y. Monosodium L-glutamate and dietary fat exert opposite effects on the proximal and distal intestinal health in growing pigs. Appl Physiol Nutr Metab 2015; 40(4): 353–63. doi: 10.1139/apnm-2014-0434

  49. Shi Y, Li J, Toga AW. Persistent reeb graph matching for fast brain search. Mach Learn Med Imaging 2014; 8679: 306–13. doi: 10.1007/978-3-319-10581-9_38

  50. Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 2007; 104(3): 979–84. doi: 10.1073/pnas.0605374104

  51. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 2008; 6(2): 121–31. doi: 10.1038/nrmicro1817

  52. Frohnert BI, Jacobs DR, Steinberger J, Moran A, Steffen LM, Sinaiko AR. Relation between serum free fatty acids and adiposity, insulin resistance, and cardiovascular risk factors from adolescence to adulthood. Diabetes 2013; 62(9): 3163–69. doi: 10.2337/db12-1122

  53. Borel AL, Boulet G, Nazare JA, Smith J, Almeras N, Tremblay A, et al. Improved plasma FFA/insulin homeostasis is independently associated with improved glucose tolerance after a 1-year lifestyle intervention in viscerally obese men. Diabetes Care 2013; 36(10): 3254–61. doi: 10.2337/dc12-2353

  54. Sakakibara I, Fujino T, Ishii M, Tanaka T, Shimosawa T, Miura S, et al. Fasting-induced hypothermia and reduced energy production in mice lacking acetyl-CoA synthetase 2. Cell Metab 2009; 9(2): 191–202. doi: 10.1016/j.cmet.2008.12.008

  55. Landau BR, Schumann WC, Chandramouli V, Magnusson I, Kumaran K, Wahren J. 14C-labeled propionate metabolism in vivo and estimates of hepatic gluconeogenesis relative to Krebs cycle flux. Am J Physiol 1993; 265(4 Pt 1): E636–47. doi: 10.1152/ajpendo.1993.265.4.E636

  56. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008; 27(2): 104–19. doi: 10.1111/j.1365-2036.2007.03562.x

  57. Pinchasov Y, Elmaliah S. Broiler chick responses to anorectic agents: dietary acetic and propionic acids and the blood metabolites. Ann Nutr Metab 1995; 39(2): 107–16. doi: 10.1159/000177850

  58. Levine UY, Looft T, Allen HK, Stanton TB. Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract. Appl Environ Microbiol 2013; 79(12): 3879–81. doi: 10.1128/aem.00589-13

  59. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504(7480): 446–50. doi: 10.1038/nature12721

  60. Ploger S, Stumpff F, Penner GB, Schulzke JD, Gabel G, Martens H, et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci 2012; 1258: 52–9. doi: 10.1111/j.1749-6632.2012.06553.x

  61. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 2011; 13(5): 517–26. doi: 10.1016/j.cmet.2011.02.018

  62. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444(7122): 1027–131. doi: 10.1038/nature05414

  63. Conterno L, Fava F, Viola R, Tuohy KM. Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr 2011; 6(3): 241–60. doi: 10.1007/s12263-011-0230-1

  64. Sanderson LM, de Groot PJ, Hooiveld GJEJ, Koppen A, Kalkhoven E, Muller M, et al. Effect of synthetic dietary triglycerides: a novel research paradigm for nutrigenomics. PLoS One 2008; 3(2): e1681. doi: 10.1371/journal.pone.0001681

  65. Walewski JL, Ge FX, Gagner M, Inabnet WB, Pomp A, Branch AD, et al. Adipocyte accumulation of long-chain fatty acids in obesity is multifactorial, resulting from increased fatty acid uptake and decreased activity of genes involved in fat utilization. Obes Surg 2010; 20(1): 93–107. doi: 10.1007/s11695-009-0002-9

  66. Kris-Etherton P, Daniels SR, Eckel RH, Engler M, Howard BV, Krauss RM, et al. Summary of the scientific conference on dietary fatty acids and cardiovascular health: conference summary from the nutrition committee of the American Heart Association. Circulation 2001; 103(7): 1034–9. doi: 10.1046/j.1365-277X.2001.00279.x

  67. Dolecek TA. Epidemiological evidence of relationships between dietary polyunsaturated fatty acids and mortality in the multiple risk factor intervention trial. Proc Soc Exp Biol Med 1992; 200: 177–82. doi: 10.3181/00379727-200-43413

  68. Djoussé L, Pankow JS, Eckfeldt JH, Folsom AR, Hopkins PN, Province MA, et al. Relation between dietary linolenic acid and coronary artery disease in the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr 2001; 74(5): 612–19. doi: 10.1093/ajcn/74.5.612

  69. Thurmond DC, Tang AB, Nakamura MT, Stern JS, Phinney SD. Time-dependent effects of progressive gamma-linolenate feeding on hyperphagia, weight gain, and erythrocyte fatty acid composition during growth of Zucker obese rats. Obes Res 1993; 1(2): 118–25. doi: 10.1002/j.1550-8528.1993.tb00600.x

  70. Schirmer MA, Phinney SD. Gamma-linolenate reduces weight regain in formerlyobese humans. J Nutr 2007; 137(6): 1430–5. doi: 10.1093/jn/137.6.1430

  71. Nkondjock A, Krewski D, Johnson KC, Ghadirian P, Canadian Cancer Registries Epidemiology Research Group. Specific fatty acid intakeand the risk of pancreatic cancer in Canada. Br J Cancer 2005; 92(5): 971–7. doi: 10.1038/sj.bjc.6602380

  72. Little JP, Madeira JM, Klegeris A. The saturated fatty acid palmitate induces human monocytic cell toxicity toward neuronal cells: exploring a possible link between obesity-related metabolic impairments and neuroinflammation. J Alzheimers Dis 2012; 30(Suppl 2): S179–83. doi: 10.3233/JAD-2011-111262

  73. Yeop Han C, Kargi AY, Omer M, Chan CK, Wabitsch M, O’Brien KD, et al. Differential effect of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes: dissociation of adipocyte hypertrophy from inflammation. Diabetes 2010; 59(2): 386–96. doi: 10.2337/db09-0925

  74. Akiba Y, Kaunitz JD. Duodenal luminal chemosensing; acid, ATP, and nutrients. Current Pharm Design 2014; 20(16): 2760–5. doi: 10.2174/13816128113199990565

  75. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015; 64(11): 1744–54. doi: 10.1136/gutjnl-2014-307913

  76. Duca FA, Swartz TD, Sakar Y, Covasa M. Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors. Int J Obes 2013; 37(3): 375–81. doi: 10.1038/ijo.2012.45

  77. Harrold JA, Halford JC. The hypothalamus and obesity. Recent Pat CNS Drug Discov 2006; 1(3): 305–14. doi: 10.2174/157488906778773616

  78. Ichimura A, Kimura I. Editorial: obesity and diabetes: energy regulation by free fatty acid receptors. Front Endocrinol 2015; 6: 178. doi: 10.3389/fendo.2015.00178

  79. Janssen S, Laermans J, Iwakura H, Tack J, Depoortere I. Sensing of fatty acids for octanoylation of ghrelin involves a gustatory G-protein. PLoS One. 2012; 7(6): e40168. doi: 10.1371/journal.pone.0040168

  80. Lu X, Zhao X, Feng J, Liou AP, Anthony S, Pechhold S, et al. Postprandial inhibition of gastric ghrelin secretion by long-chain fatty acid through GPR120 in isolated gastric ghrelin cells and mice. Am J Physiol Gastrointest Liver Physiol 2012; 303(3): 367–76. doi: 10.1152/ajpgi.00541.2011

  81. Zhi G, Makoto Y, Sayaka A, Reiko K, Zigman JM, Takafumi S, et al. G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro. Am J Physiol Endocrinol Metab 2014; 306(1): E28–35. doi: 10.1152/ajpendo.00306.2013

  82. Toledo-Corral CM, Alderete TL, Hu HH, Nayak K, Esplana S, Liu T, et al. Ectopic fat deposition in prediabetic overweight and obese minority adolescents. J Clin Endocrinol Metab 2013; 98(3): 1115–21. doi: 10.1210/jc.2012-3806

Published
2019-07-17
How to Cite
1.
Su Y, Feng Z, He Y, Hong L, Liu G, Li T, Yin Y. Monosodium L-glutamate and fats change free fatty acid concentrations in intestinal contents and affect free fatty acid receptors express profile in growing pigs. fnr [Internet]. 2019Jul.17 [cited 2019Oct.19];630. Available from: https://foodandnutritionresearch.net/index.php/fnr/article/view/1444
Section
Original Articles

Most read articles by the same author(s)