Enhancement of glucose and bone metabolism in ovariectomized rats fed with germinated pigmented rice with giant embryo (Oryza sativa L. cv. Keunnunjami)

  • Soo Im Chung
  • Xingyue Jin
  • Mi Young Kang
Keywords: pigmented giant embryo rice; Keunnunjami; germination; glucose; bone metabolism; menopause

Abstract

Background: Menopause induces various metabolic disorders due to the rapid decrease of the ovarian hormone estrogen. It is involved in increased risk of obesity, diabetes, dyslipidemia, and osteoporosis. The pigmented giant embryo cultivar is a promising food product for menopause-induced metabolic disorders.

Objective: The effects of non-germinated and germinated Keunnunjami, a new blackish purple pigmented rice with a giant embryo, on glucose and bone metabolisms in ovariectomized rats were investigated.

Design: The animals were fed with normal control diet (NC group) or control diet supplemented with either non-germinated Keunnunjami (KN group) or germinated Keunnunjami (GKN group) powder for 8 weeks.

Results: The blood glucose and plasma insulin levels, adipokine concentrations, hepatic glucose-regulating enzyme activities, and bone resorption biomarker levels significantly decreased in KN and GKN groups compared to those of the control animals.

Discussion: These findings illustrate that GKN group showed greater hypoglycemic activity and lower bone resorption than KN group, suggesting that germination could further improve the physiological property of Keunnunjami.

Conclusion: Germinated Keunnunjami may have therapeutic potential against hyperglycemia and bone turnover imbalance caused by menopause.

Downloads

Download data is not yet available.

References


  1. Chung SI, Lo LMP, Nam SJ, Jin XY, Kang MY. Antioxidant capacity of giant embryo rice Seonong 17 and Keunnunjami. J Adv Agric Technol 2016; 3(2): 94–98. doi: 10.18178/joaat.3.2.94-98

  2. Han SJ, Kwon SW, Chu SH, Ryu SN. A new rice variety ‘Keunnunjami’, with high concentrations of cyanidin 3-glucoside and giant embryo. Kor J Breed Sci 2012; 44(2): 185–89.

  3. Chung SI, Rico CW, Lee SC, Kang MY. Hypolipidemic and body fat-lowering effects of giant embryo brown rice (Seonong 17 and Keunnunjami) in high-fat-fed mice. Cereal Chem 2014; 91(1): 18–22. doi: 10.1094/cchem-04-13-0062-r

  4. Chung SI, Rico CW, Lee SC, Kang MY. Instant rice made from white and pigmented giant embryonic rice reduces lipid levels and body weight in high fat diet-fed mice. Obes Res Clin Pract 2016; 10(6): 692–700. doi: 10.1016/j.orcp.2016.02.001

  5. Deng GF, Xu XR, Zhang Y, Li D, Gan RY, Li HB. Phenolic compounds and bioactivities of pigmented rice. Crit Rev Food Sci Nutr 2013; 53(3): 296–306. doi: 10.1080/10408398.2010.529624

  6. Kang MY, Rico CW, Bae HJ, Lee SC. Antioxidant capacity of newly developed pigmented rice cultivars in Korea. Cereal Chem 2013; 90(5): 497–501. doi: 10.1094/cchem-09-12-0114-r

  7. Goufo P, Trindade H. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci Nutr 2014; 2(2): 75–104. doi: 10.1002/fsn3.86

  8. Lee YR, Kim CE, Nam SH. Cholesterol-lowering and antioxidant status-improving efficacy of germinated giant embryonic rice (Oryza sativa L.) in high cholesterol-fed rats. Ann Nutr Metab 2007; 51(6): 519–26. doi:10.1159/000112733

  9. Zhang LL, Hu PS, Tang SQ, Zhao HJ, Wu DX. Comparative studies on major nutritional components of rice with a giant embryo and a normal embryo. J Food Biochem 2005; 29(6): 653–61. doi: 10.1111/j.1745-4514.2005.00039.x

  10. Cho DH, Lim ST. Germinated brown rice and its bio-functional compounds. Food Chem 2016; 196: 259–71. doi: 10.1016/j.foodchem.2015.09.025

  11. Ding J, Yang T, Feng H, Dong M, Slavin M, Xiong S, et al. Enhancing contents of γ-aminobutyric acid (GABA) and other micronutrients in dehulled rice during germination under normoxi and hypoxic conditions. J Agric Food Chem 2016; 64(5): 1094–102. doi: 10.1021/acs.jafc.5b04859

  12. Ng LT, Huang SH, Chen YT, Su CH. Changes of tocopherols, tocotrienols, γ-oryzanol, and γ-aminobutyric acid levels in the germinated brown rice of pigmented and nonpigmented cultivars. J Agric Food Chem 2013; 61(51): 12604–11. doi: 10.1021/jf403703t

  13. Moongngarm A, Saetung N. Comparison of chemical compositions andbioactive compounds of germinated rough rice and brown rice. Food Chem 2010; 122(3): 782–88. doi: 10.1016/j.foodchem.2010.03.053

  14. Hubner F, Arendt EK. Germination of cereal grains as a way to improve the nutritional value: a review. Crit Rev Food Sci Nutr 2013; 53(8): 853–61.

  15. Nelson K, Stojanovska L, Vasiljevic T, Mathai M. Germinated grains: a superior whole grain functional food? Canadian J Physiol Pharmacol 2013; 91(6): 429–41. doi: 10.1139/cjpp-2012-0351

  16. Musalmah M, Nizrana, MY, Fairuz AH, NoorAini AH, Azian AL, Gapor MT, et al. Comparative effects of palm vitamin E and α-tocopherol on healing and wound tissue antioxidant enzyme levels in diabetic rats. Lipids 2005; 40(6): 575–80. doi: 10.1007/s11745-005-1418-9

  17. Varady KA, Wang Y, Jones PJ. Role of policosanols in the prevention and treatment of cardiovascular disease. Nutr Rev 2003; 61(1): 376–83. doi: 10.1301/nr.2003.nov.376-383

  18. Wu F, Yang N, Toure A, Jin Z, Xu X. Germinated brown rice and its role in human health. Crit Rev Food Sci Nutr 2013b; 53(5): 451–63. doi: 10.1080/10408398.2010.542259

  19. Lo LMP, Kang MY, Yi SJ, Chung SI. Dietary supplementation of germinated pigmented rice (Oryza sativa L.) lowers dyslipidemia risk in ovariectomized Sprague-Dawley rats. Food Nutr Res 2016; 60: 300092. doi:10.3402/fnr.v60.30092.

  20. Carr MC. The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab 2003; 88(6): 2404–11. doi: 10.1210/jc.2003-030242

  21. Ji MX, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med 2015; 1(1): 9–13. doi: 10.1016/j.cdtm.2015.02.006

  22. Wu F, Chen H, Yang N, Wang J, Duan X, Jin Z, et al. Effect on germination time on physicochemical properties of brown rice flour and starch from different rice cultivars. J Cereal Sci 2013a; 58(2): 263–71. doi: 10.1016/j.jcs.2013.06.008

  23. AOAC. Official methods of analysis. 17th ed. Arlington, VA: Association of Official Analytical Chemists; 2003.

  24. Islam MA, Becerra JX. Analysis of chemical components involved in germination process of rice variety Jhapra. J Sci Res 2012; 4(1): 251–62. doi: 10.3329/jsr.v4i1.7598

  25. Jeng TL, Shih YJ, Ho PT, Lai CC, Lin YW, Wang CS, et al. γ -Oryzanol, tocol and mineral compositions in different grain fractions of giant embryo rice mutants. J Sci Food Agric 2012; 92(7): 1468–74. doi: 10.1002/jsfa.4728

  26. Kim NH, Kwak J, Baik JY, Yoon MR, Lee JS, Yoon SW, et al. Changes in lipid substances in rice during grain development. Phytochemistry 2015; 116: 170–79. doi: 10.1016/j.phytochem.2015.05.004

  27. Konwachara T, Ahromrit A. Effect of cooking on functional properties of germinated black glutinous rice (KKU-URL012). Songklanakarin J Sci Technol 2014; 36(3): 283–90.

  28. Reeves PG. Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 1997; 127(5): 838S–41S. doi: 10.1093/jn/127.5.838s

  29. Seifter S, Dayton S, Navic B, Muntwyler E. The estimation of glycogen with the anthrone reagent. Arch Biochem 1950; 25(1): 191–200.

  30. Vogeser M, Konig D, Frey I, Predel HG, Parhofer KG, Berg A. Fasting serum insulin and the homeostasis model of insulin resistance (HOMA-IR) in the monitoring of lifestyle interventions in obese persons. Clin Biochem 2007; 40(13): 964–68. doi: 10.1016/j.clinbiochem.2007.05.009

  31. Hulcher FH, Oleson WH. Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A. J Lipid Res 1973; 14(6): 625–31.

  32. Bradford MM. A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72(1–2): 248–54. doi: 10.1006/abio.1976.9999

  33. Bentle LA, Lardy HA. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase. J Biol Chem 1976; 251(10): 2916–21.

  34. Alegre M, Ciudad CJ, Fillat C, Guinovart JJ. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal Biochem 1988; 173(1): 185–89. doi: 10.1016/0003-2697(88)90176-5

  35. Davidson AL, Arion WJ. Factors underlying significant underestimations of glucokinase activity in crude liver extracts: physiological implications of higher cellular activity. Arch Biochem Biophys 1987; 253(1): 156–67. doi: 10.1016/0003-9861(87)90648-5

  36. Darabi H, Raeisi A, Kalantarhormozi MR, Ostovar A, Assadi M, Asadipooyae K, et al. Adiponectin as protective factor against progression toward type 2 diabetes mellitus in postmenopausal women. Medicine 2015; 94(33): e1347. doi: 10.1097/md.0000000000001347

  37. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty lover disease. Int J Mol Sci 2014; 15(4): 6184–223. doi: 10.3390/ijms15046184

  38. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Christopher M, et al. The hormone resistin links obesity to diabetes. Nature 2001; 409(6818): 307–12. doi: 10.1038/35053000

  39. Schaftingen EV, Gerin I. The glucose-6-phosphatase system. Biochem J 2002; 362(2): 513–32. doi: 10.1042/0264-6021:3620513

  40. She P, Shiota M, Shelton KD, Chalkley R, Postic C, Magnuson MA. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol Cell Biol 2000; 20(17): 6508–17. doi: 10.1128/mcb.20.17.6508-6517.2000

  41. Coope GJ, Atkinson AM, Allott C, Mckerrecher D, Johnstone C, Pike KG, et al. Predictive blood glucose lowering efficacy by glucokinase activators in high fat fed female zucker rats. Br J Pharmacol 2003; 149(3): 328–35. doi: 10.1038/sj.bjp.0706848

  42. Vaananen HK, Harkonen PL. Estrogen and bone metabolism. Maturitas 1996; 23: S65–S69. doi: 10.1016/0378-5122(96)01015-8

  43. Delmas PD, Pornel B, Felsenberg D, Gamero P, Pilate C, Dian MP. A dose-ranging trial of a matrix transdermal 17beta-estradiol for the prevention of bone loss in early postmenopausal women, International study group. Bone 1999; 24(5): 517–23. doi: 10.1016/s8756-3282(99)00076-9

  44. Greenwald MW, Gluck OS, Lang E, Rakov V. Oral hormone therapy with 17beta-estradiol and 17beta-estradiol in combination with norethindrone acetate in the prevention of bone loss in early postmenopausal women: dose-dependent effects. Menopause 2005; 12: 741–48. doi: 10.1097/01.gme.0000184425.73567.12

  45. Prestwood KM, Kenny AM, Kleppinger A, Kulldorff M. Ultralow-dose micronized 17beta-estradiol and bone density and bone metabolism in older women: a randomized controlled trial. JAMA 2003; 290(8): 1042–48. doi: 10.1001/jama.290.8.1042

  46. Bae HJ, Rico CW, Ryu SN, Kang MY. Hypolipidemic, hypoglycemic and antioxidantive effects of a new pigmented rice cultivar “Superjami” in high fat-fed mice. J Korean Soc Appl Biol Chem 2014; 57(5): 685–91. doi: 10.1007/s13765-014-4095-z

  47. Ling WH, Cheng QX, Ma J, Wang T. Red and black rice decrease atherosclerotic plaque formation and increase antioxidant status in rabbits. J Nutr 2001; 131(5): 1421–26. doi: 10.1093/jn/131.5.1421

  48. Shimoda H, Aitani M, Tanaka J, Hitoe S. Purple rice extract exhibits preventive activities on experimental diabetes models and human subjects. J Rice Res 2015; 3(2): 137. doi: 10.4172/2375-4338.1000137

  49. Lee YR, Kang MY, Nam SH. Effect of giant embryonic rice supplementation on the lipid peroxidation levels and antioxidative enzyme activities in the plasma and liver of streptozotocin-induced diabetic rats. J Kor Soc Appl Biol Chem 2005; 48(4): 358–63.

  50. Lee JY, Choi HY, Kang YR, Chang HB, Chun HS, Lee MS, et al. Effects of long-term supplementation of policosanol on blood cholesterol/glucose levels and 3-hydroxy-3methylglutaryl coenzyme a reductase activity in a rat model fed high cholesterol diets. Food Sci Biotechnol 2016; 25(3): 899–904. doi: 10.1007/s10068-016-0147-y

  51. Son MJ, Rico CW, Nam SH, Kang MY. Effect of oryzanol and ferulic acid on the glucose metabolism of mice fed with high fat diet. J Food Sci 2011; 76(1): H7–H10. doi: 10.1111/j.1750-3841.2010.01907.x

  52. Oh CH, Oh SH. Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J Med Food 2004; 7(1): 19–23. doi: 10.1089/109662004322984653

  53. Altindag O, Erel O, Saran N, Celik H, Selek S. Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 2008; 28(4): 317–21. doi: 10.1007/s00296-007-0452-0

  54. Sendur OF, Turan Y, Tastaban E, Serter M. Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine 2009; 76(5): 514–18. doi: 10.1016/j.jbspin.2009.02.005

  55. Grassi F, Tell G, Robbie-Ryan M, Gao Y, Terauchi M, Yang X, et al. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. PNAS 2007; 104(38): 15087–92. doi: 10.1073/pnas.0703610104

  56. De Franca NA, Camargo MB, Lazaretti-Castro M, Martini LA. Antioxidant intake and bone status in a cross-sectional study of Brazilian women with osteoporosis. Nutr Health 2013; 22(2): 133–42. doi: 10.1177/0260106014563445

  57. Muhammad N, Luke DA, Shuid AN, Mohamed N, Soelaiman IN. Tocotrienol supplementation in postmenopausal osteoporosis: evidence from a laboratory study. Clinics 2013; 68(10): 1338–43. doi: 10.18178/joaat.3.2.94-98

Published
2019-03-06
How to Cite
Chung S. I., Jin X., & Kang M. Y. (2019). Enhancement of glucose and bone metabolism in ovariectomized rats fed with germinated pigmented rice with giant embryo (<em>Oryza sativa</em&gt; L. cv. Keunnunjami). Food & Nutrition Research, 63. https://doi.org/10.29219/fnr.v63.1612
Section
Original Articles