The flavonoid-rich ethanolic extract from the green cocoon shell of silkworm has excellent antioxidation, glucosidase inhibition, and cell protective effects in vitro

  • Hai-Yan Wang Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Dushuhu Higher Edu. Town, Suzhou, China
  • Jin-Ge Zhao Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Dushuhu Higher Edu. Town, Suzhou, China
  • Yu-Qing Zhang Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Dushuhu Higher Edu. Town, Suzhou, China
Keywords: sericin, ethanolic extract, antioxidation, glucosidase inhibition, cell protective effect

Abstract

The green cocoon shell of a novel variety of silkworm, Bombyx mori, is rich in two types of quercetin and kaempferol flavonoids. The aim of this study was to identify these flavonoids in the ethanolic extract (EE) from green cocoons and develop EE applications in healthy foods. The experimental results indicated that the amount of total amino acids in EE was 27.06%. The flavonoids in EE are presented in quercetin and kaempferol glycosides. The total amount of the two aglycones was 33.42 ± 0.08 mg/g. The IC50 values of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 1,2’-azino-bis (3-ethylbenzthiazoline-6-sulphonicacid) (ABTS), and hydroxyl radical scavenging abilities were 296.95 ± 13.24 μg/mL, 94.31 ± 9.13 μg/mL, and 9.21 ± 0.15 mg/mL, respectively. The IC50 values of the inhibitory activities of α-amylase and α-glucosidase were 37.57 ± 6.45 μg/mL and 212.69 ± 22.94 μg/mL, respectively. EE also reduced the level of reactive oxygen species (ROS) and oxidative stress in L02 cells induced by high glucose levels. It also effectively decreased the content of 8-hydroxyl deoxyguanosine (8-OHdG), nuclear factor κB (NF-κB), and tumour necrosis factor alpha (TNF-α) in cells with a good dose effect. These results clearly indicated that the flavonoid-rich EE with excellent antioxidant and glucosidase inhibition abilities significantly reduced the damage to cells caused by oxidative stress and inflammatory reactions. It is suggested that EE might serve as useful functional foods for the treatment of related diseases induced by oxidative stress such as diabetes mellitus.

Downloads

Download data is not yet available.

References


  1. Voegeli R, Meier J, Blust R. Sericin silk protein, unique structure and properties. Cosmet Toilet 1993; 108: 101–8.

  2. Mondal M, Trivedy K, Kumar SN. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn. – a review. Caspian J Env Sci 2007; 5: 63–76.

  3. Sehnal F. Prospects of the practical use of silk sericins. Entomol Res 2008; 38: 1–8. doi: 10.1111/j.1748-5967.2008.00168.x

  4. Aramwit P, Kanokpanont S, De-eknamkul W, Srichana T. Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 2009; 107(5): 556–61. doi: 10.1016/j.jbiosc.2008.12.012

  5. Dash R, Mandal M, Kundu SC. Silk sericin protein of tropical tasar silkworm inhibits UVB-induced apoptosis in human skin keratinocytes. Mol Cell Biochem 2008; 311: 111–9. doi: 10.1007/s11010-008-9702-z

  6. Zhao JG, Zhang YQ. Inhibition of the flavonoid extract from silkworm cocoons on DMBA/UVB-induced skin damage and tumor promotion in BALB/c mice. Toxicol Res 2015; 4: 1016–24. doi: 10.1039/C5TX00087D

  7. Yamada H, Fuwa N, Nomura M. Use of sericin as antioxidants and tyrosinase inhibitors. Pat., 0841065, 1998.

  8. Sasaki M, Kato N, Watanabe H, Yamada H. Silk protein, sericin, suppresses colon carcinogenesis induced by 1,2-dimethylhydrazine in mice. Oncol Rep 2000; 7: 1049–52. doi: 10.3892/or.7.5.1049

  9. Barajas-gamboa JA, Serpa-guerra AM, Restrepo-Osorio A, Álvarez-López C. Sericin applications: a globular silk protein. Ingeniería y Competitividad. 2016;18(2):193–206.

  10. Ghosh S, Rao RS, Nambiar KS, Haragannavar VC, Augustine D, Sowmya S V. Sericin, a dietary additive: Mini review. J Med Radiol Pa Surg 2017; 4: 13–17. doi: 10.15713/ins.jmrps.89

  11. Kundu SC, Dash BC, Dash R, Kaplan DL. Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications. Prog Polym Sci 2008; 33: 998–1012. doi: 10.1016/j.progpolymsci.2008.08.002

  12. Sasaki M, Yamada H, Kato N. A resistant protein, sericin improves atropine-induced constipation in rats. Food Sci Tech Res 2000; 6: 280–3. doi: 10.3136/fstr.6.280

  13. Tamada Y, Sano M, NiwaK, Imai T, Yoshino G. Sulfation of silk sericin and anticoagulant activity of sulfated sericin. J Biomater Sci Polym Ed 2004; 15: 971–80. doi: 10.1163/1568562041526469

  14. Toyosawat T, Terada S, Sasaki M, Yamada H, Kinooka M. Observation of individual cell behaviors to analyze mitogenic effects of sericin. Anim Cell Technol Basic Appl Aspects 2006; 3: 155–61. doi: 10.1007/1-4020-4457-7_22

  15. Tsubouchi K, Igarashi Y, Takasu Y, Yamada H. Sericin enhances attachment of cultured human skin fibroblasts. Biosci Biotechnol Biochem 2005; 69: 403–5. doi: 10.1271/bbb.69.403

  16. Lamboni L, Gauthier M, Yang G, Wang Q. Silk sericIn: a versatile material for tissue engineering and drug delivery. Biotechnol Adv 2015; 33: 1855–67. doi: 10.1016/j.biotechadv.2015.10.014

  17. Wang HY, Wang YJ, Zhou LX, Zhu L, Zhang YQ. Isolation and bioactivities of a non-sericin component from cocoon shell silk sericin of the silkworm Bombyx mori. Food Func 2012; 3: 150–8. doi: 10.1039/c1fo10148j

  18. Oku M. The chemical studies on the pigments in the cocoon filaments of Bombyx mori (VII). Nippon Nogeikagaku Kaishi (in Japanese) 1934; 10: 1014–28.

  19. Fujimoto N, Kawakami K. Studies on the pigments of cocoon. (II) Genetical relationship between green cocoon and light green cocoon (Sasamayu) in the silkworm, Bombyx mori. J Sericultural Sci JPN 1958; 27: 391–2. doi: 10.11416/kontyushigen1930.27.391

  20. Hayashiya K, Sugimoto S, Fujimoto N. Studies on the pigments of cocoon. (III) The qualitative test of the pigments of green cocoon. J Sericultural Sci JPN 1959; 28: 27–9. doi: 10.11416/kontyushigen1930.28.27

  21. Masayoshi Y, Kurioka A. Study on the distribution of flavonols in the yellow green Irodori cocoon. J Silk Sci Tech JPN 2010; 18: 27–31. doi: 10.11417/silk.18.27

  22. Kurioka AK, Amazaki MY. Purification and identification of flavonoids from the yellow green Cocoon shell (Sasamayu) of the silkworm, Bombyx mori. Biosci Biotechnol Biochem 2002; 66: 1396–9. doi: 10.1271/bbb.66.1396

  23. Yasumori T, Ken-ichi N, Kenichi N, Chiyuki T. Flavonoid 5-glucosides from the cocoon shell of the silkworm, Bombyx mori. Phytochem 2002; 59: 275–8. doi: 10.1016/S0031-9422(01)00477-0

  24. Hirayama C, Ono H, Tamura Y, Nakamura M. C-prolinylquercetins from the yellow cocoon shell of the silkworm, Bombyx mori. Phytochem 2006; 67: 579–83. doi: 10.1016/j.phytochem.2005.11.030

  25. Okazaki Y, Kakehi S, Xu Y, Tsujimoto K, Sasaki M, Ogawa H and Kato N. Consumption of sericin reduces serum lipids, ameliorates glucose tolerance and elevates serum adiponectin in rats fed a high-fat diet. Biosci Biotechnol Biochem 2010; 74(8): 1534–1538. doi: 10.1271/bbb.100065

  26. Aragno M, Mastrocola R, Medana C, Catalano MG, Vercellinatto I, Danni O, et al. Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinol 2006; 147(12): 5967–74. doi: 10.1210/en.2006-0728

  27. Cao TT, Zhang YQ. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater Sci Eng C 2016; 61: 940–52. doi: 10.1016/j.msec.2015.12.082

  28. Zhao JG, Zhang YQ. A new estimation of the total flavonoids in silkworm cocoon sericin layer through aglycone determination by hydrolysis-assisted extraction and HPLC-DAD analysis. Food Nutr Res 2016; 60: 30932. doi: 10.3402/fnr.v60.30932

  29. Olabiyi AA, Allismith YR, Babatola LJ. Inhibitory effect of aqueous extract of different parts of Gossypium herbaceum, on key enzymes linked with type 2 diabetes and oxidative stress in rat pancreas in vitro. Beni-Suef University J Basic Appl Sci 2016; 5: 180–6. doi: 10.1016/j.bjbas.2016.05.003

  30. Zhang M, Pan LJ, Jiang ST, Mo YW. Protective effects of anthocyanins from purple sweet potato on acute carbon tetrachloride-induced oxidative hepatotoxicity fibrosis in mice. Food Agr Immunol 2015; 27: 1–14. doi: 10.1080/09540105.2015.1079589

  31. Fuwa H. A new method for microdetermination of amylase activity by the use of amylose as substrate. J Biochem 1954; 41: 583–603. doi: 10.2307/2485221

  32. Tibbot BK, Skadsen RW. Molecular cloning and characterization of a gibberellin-inducible, putative α-glucosidase gene from barley. Plant Mol Biol 1996; 30: 229–41. doi: 10.1007/BF00020110

  33. Kazuhisa T, Takagi H, Takahashi M, Yamada H, Nakamori S. Cryoprotective effect of the serine-rich repetitive sequence in silk protein sericin. J Biochem 2001; 129: 979–86. doi: 10.1093/oxfordjournals.jbchem.a002946

  34. Kato N, Sato S, Yamanaka J, Yamada H, Fuwa N, Nomura M. Silk protein, sericin inhibits lipid peroxidation and tyrosinase activity. Biosci Biotech Biochem1998; 62: 145–7. doi: 10.1271/bbb.62.145

  35. Zhaorigetu S, Sasaki M, Watanabe H, Kato N. Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1, 2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Biosci Biotech Biochem 2001; 65: 2181–6. doi: 10.1271/bbb.65.2181

  36. Zhaorigetu S, Noriyuki Y, Masahiro S, Hiromitsu W, Norihisa K. Inhibitory effects of silk protein, sericin on UVB-induced acute damage and tumor promotion by reducing oxidative stress in the skin of hairless mouse. J Photochem Photobiol B 2003; 71: 11–17. doi: 10.1016/s1011-1344(03)00092-7

  37. Song C, Yang Z, Zhong M, Chen Z. Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells. Neural Regen Res 2013; 8(6): 506–13. doi: 10.3969/j.issn.1673-5374.2013.06.003

  38. Kamalakkannan N, Prince PSM. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats. Basic Clin Pharmacol Toxicol 2006; 98(1): 97–103. doi: 10.1111/j.1742-7843.2006.pto_241.x

  39. Min Q, Bai YT, Zhang YC, Yu W, Zhang ML, Liu DY, et al. Hawthorn leaf flavonoids protect against diabetes-induced cardiomyopathy in rats via PKC- α signaling pathway. Evid Based Complement Alternat Med 2017; 2017: 1–8

  40. Wang G, Wang JJ, Guan R, Du L, Gao J and Fu XL. Strategies to target glucose metabolism in tumor microenvironment on cancer by flavonoids. Nutr Cancer 2017;69(4):534. doi: 10.1080/01635581.2017.1295090

  41. Elmarakby AA, Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 2012; 30(1): 49. doi: 10.1111/j.1755-5922.2010.00218.x

  42. Ramesh B, Viswanathan P, Pugalendi KV. Protective effect of Umbelliferone on membranous fatty acid composition in streptozotocin-induced diabetic rats. Eur J Pharmacol 2007; 566(1–3): 231–9. doi: 10.1016/j.ejphar.2007.03.045

  43. Feingold KR, Grunfeld C. Role of cytokines in inducing hyperlipidemia. Diabetes, 1992, 41(Supplement 2): 97–101. doi: 10.2337/diab.41.2.S97

Published
2020-08-14
How to Cite
Wang H.-Y., Zhao J.-G., & Zhang Y.-Q. (2020). The flavonoid-rich ethanolic extract from the green cocoon shell of silkworm has excellent antioxidation, glucosidase inhibition, and cell protective effects <em>in vitro</em&gt;. Food & Nutrition Research, 64. https://doi.org/10.29219/fnr.v64.1637
Section
Original Articles