Gastrointestinal and metabolic effects of noodles-based konjac glucomannan in rats

  • Yun Zhou
  • Jiangdan Qin
  • Yongquan Wang
  • Yichen Wang
  • Yongqiang Cheng
Keywords: konjac glucomannan; food matrix; noodles-based; digestion; glycemic response; satiety


This study was conducted to investigate the hypothesis that the beneficial metabolic effects of dietary fiber, konjac glucomannan (KGM), related with in vivo digestion might be altered if the complicated food matrix was taken into consideration. A diet of precooked noodles (PN), as widely produced and consumed in Asia, was used to simulate an actual food context. Assays were conducted with male Wistar rats (n = 80); the rats were divided into five groups and fed with either PN (control), PN supplemented with medium-dose KGM (MK), precooked low-dose KGM-supplemented noodles (LKD), precooked medium-dose KGM-supplemented noodles (MKD) or precooked high-dose KGM supplemented noodles (HKD). The time-dependent changes in blood glucose and the sensitivity to insulin after intragastric administration were determined to evaluate the postprandial glycemic response. The activity of intestinal Na+-K+-ATPase and the levels of gut hormones including motilin, cholecystokin, GLP-1, and orexin were also determined to provide insights into the function of gastrointestinal motion and after-meal hormonal feedback in each group. The noodles-based KGM showed much more efficacy in sustaining glucose homeostasis compared with KGM supplemented in a diet of noodles, indicating there might be potential long-term health outcomes of satiety and energy balance using noodles-based KGM. The postprandial glycemia was largely moderated by LKD and MKD. Despite the significant reduction in the production of glucose, MKD caused insensitivity to insulin–blood glucose regulation and a rapid gut negative feedback following a severe blood glucose fluctuation. In conclusion, the health-promoting benefits of KGM supplements on glycemic response highly depend on the type of matrix and the dose of KGM.


Download data is not yet available.


  1. Hermansen ML, Eriksen NM, Mortensen LS, Holm L, Hermansen K. Can the glycemic index (GI) be used as a tool in the prevention and management of type 2 diabetes? Rev Diabet Stud 2006; 5(3): 61–71. doi: 10.1900/RDS.2006.3.61

  2. Dikeman CL, Fahey GC. Viscosity as related to dietary fiber: a review. Crit Rev Food Sci Nutr 2006; 46(8): 649–63. doi: 10.1080/10408390500511862

  3. Behall KM, Scholfield DJ, Hallfrisch JG, Hallfrisch JG, Liljeberg HG. Consumption of both resistant starch and β-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care 2006; 29(5): 976–81. doi: 10.2337/dc05

  4. Liu X, Zhao J, Zhang X, Li Y, Zhao J, Li T, et al. Enrichment of soybean dietary fiber and protein fortified rice grain by dry flour extrusion cooking: the physicochemical, pasting, taste, palatability, cooking and starch digestibility properties. RSC Adv 2018; 8(47): 26682–90. doi: 10.1039/C8RA01781F

  5. Meldrum OW, Yakubov GE, Gartaula G, McGuckin MA, Gidley MJ. Mucoadhesive functionality of cell wall structures from fruits and grains: electrostatic and polymer network interactions mediated by soluble dietary polysaccharides. Sci Rep 2017; 7(1): 15794. doi: 10.1038/s41598-017-16090-1

  6. Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Olvera RA. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 2018; 175(3): P679–94. doi: 10.1016/jcell.2018.09.004

  7. Nishinari K , Williams PA, Phillips GO. Review of the physico-chemical characteristics and properties of konjac mannan. Food Hydrocoll 1992; 6(2): 199–222. doi: 10.1016/S0268-005X(09)80360-3

  8. Vuksan V, Jenkins D, Spadafora P, Sievenpiper JL, Owen R, Vidgen E, et al. Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes. A randomized controlled metabolic trial. Diabetes Care 1999; 22(6): 913–19. doi: 10.2337/diacare.22.6.913

  9. Yoshida M, Vanstone C, Parsons W, Zawistowski J, Jones PJ. Effect of plant sterols and glucomannan on lipids in individuals with and without type II diabetes. Eur J Clin Nutr 2006; 60(4): 529. doi: 10.1038/sjejcn.1602347

  10. Foxxorenstein AE, Mcnally MA, Odunsi ST. Update on constipation: one treatment does not fit all. Cleve Clin J Med 2008; 75(11): 813–24. doi: 10.3949/ccjm.75.11.813

  11. Li B, Xia J, Wang Y, Xie B. Grain-size effect on the structure and antiobesity activity of konjac flour. J Agric Food Chem 2005; 53(19): 7404–7. doi: 10.1021/jf050751q

  12. Jenkins D, Wolever T, Leeds AR. Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. Br Med J 1978; 1(6124): 1392–4. doi: 10.1136/bmj.1.6124.1392

  13. Luo X, He P, Lin X. The mechanism of sodium hydroxide solution promoting the gelation of Konjac glucomannan (KGM). Food Hydrocoll 2013; 30(1): 92–9. doi: 10.1016/j.foodhyd.201205.012

  14. Xiong Z, Zhou W, Sun L, Li X, Zhao D, Chen Y, et al. Konjac glucomannan microspheres for low-cost desalting of protein solution. Carbohydr Polym 2014; 111(OCT): 56–62. doi: 10.1016/j.carbpol.2014.04.059

  15. Babio N, Balanza R, Basulto J. Dietary fibre: influence on body weight, glycemic control and plasma cholesterol profile. Nutr Hosp 2010; 25(3): 327–40. doi: 10.3305/nh.2010.25.3.4459

  16. Reimer R, McBurney MI. Dietary fiber modulates intestinal proglucagon messenger ribonucleic acid and postprandial secretion of glucagon-like peptide-1 and insulin in rats. Endocrinology 1996; 137(9): 3948–56. doi: 10.1210/endo.137.9.8756571

  17. Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 2009; 89(6): 1751–9. doi: 10.3945/ajcn.2009.27465

  18. Mitchell JS. Available water in konjac glucomannan–starch mixtures. Influence on the gelatinization, retrogradation and complexation properties of two starches. Food Hydrocoll 2014; 41(20): 71–8. doi: 10.1016/j.foodhyd.2013.12.014

  19. Singh U, Kherdekar MS, Jambunathan R. Studies on desi and kabuli chickpea (Cicer arietinum L.) cultivars. The levels of amylase inhibitors, levels of oligosaccharides and in vitro starch digestibility. J Food Sci 2010; 47(2): 510–12. doi: 10.1111/j.1365-2621.1982.tb10113.x

  20. Wang X-S, Tang C-H, Yang X-Q, Gao W-R. Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins. Food Chem 2008; 107(1): 11–18. doi: 10.1016/j.foodchem.2007.06.064

  21. Han L, Zhou Y, Tatsumi E, Shen Q, Cheng Y, Li L. Thermomechanical properties of dough and quality of noodles made from wheat flour supplemented with different grades of tartary buckwheat (Fagopyrum tataricum Gaertn.) flour. Food Bioprocess Technol 2013; 6(8): 1953–62. doi: 10.1007/s11947-012-0831-8

  22. Dartois A, Singh J, Kaur L, Singh H. Influence of guar gum on the in vitro starch digestibility – Rheological and microstructural characteristics. Food Biophys 2010; 5(3): 149–60. doi: 10.1007/s11483-010-9155-2

  23. Gularte MA, Rosell CM. Physicochemical properties and enzymatic hydrolysis of different starches in the presence of hydrocolloids. Carbohydr Polym 2011; 85(1): 237–44. doi: 10.1016/j.carbpol.2011.02.025

  24. Sasaki T, Kohyama K. Influence of non-starch polysaccharides on the in vitro digestibility and viscosity of starch suspensions. Food Chem 2012; 133(4): 1420–6. doi: 10.1016/j.foodchem.2012.02.029

  25. Zhou Y, Cao H, Hou MNirasawa S, Tatsumi E, Foster TJ, et al. Effect of konjac glucomannan on physical and sensory properties of noodles made from low-protein wheat flour. Food Res Int 2013; 51(2): 879–85. doi: 10.1016/j.foodres.2013.02.002

  26. Dhital S, Warren FJ, Butterworth PJ, Ellis PR, Gidley MJ. Mechanisms of starch digestion by amylasea structural basis for kinetic properties. Crit Rev Food Technol 2015; 57(5): 875–92. doi: 10.1080/10408398.2014.922043

  27. Wang Y, Chen Y, Zhou Y, Nirasawa S, Tatsumi E, Li X, et al. Effects of konjac glucomannan on heat-induced changes of wheat gluten structure. Food Chem 2017; 229: 409–16. doi: 10.1016/j.foodchem.2017.02.056

  28. Zhou Y, Zhao D, Foster TJ, Liu Y, Wang Y, Nirasawa S, et al. Konjac glucomannan-induced changes in thiol/disulphide exchange and gluten conformation upon dough mixing. Food Chem 2014; 143: 163–9. doi: 10.1016/j.foodchem.2013.07.088

  29. Fernandes J, Vogt J, Wolever TM. Intravenous acetate elicits a greater free fatty acid rebound in normal than hyperinsulinaemic humans. Eur J Clin Nutr 2012; 66(9): 1029. doi: 10.1038/ejcn.2012.98

  30. Khanna S, Tester RF. Influence of purified konjac glucomannan on the gelatinisation and retrogradation properties of maize and potato starches. Food Hydrocoll 2006; 20(5): 567–76. doi: 10.1016/jfoodhyd.2005.05.004

  31. Zhang G, Hamaker BR. Slowly digestible starch: concept, mechanism, and proposed extended glycemic index. Crit Rev Food Sci Nutr 2009; 49(10): 852–67. doi: 10.1080/10408390903372466

  32. Dhital S, Dolan G, Stokes JR, Gidley MJ. Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides. Food Func 2014; 5(3): 579–86. doi: 10.1039/c3fo60506j

  33. Ranawana V, Clegg ME, Shafat A, Henry CJ. Postmastication digestion factors influence glycemic variability in humans. Nutr Res 2011; 31(6): 452. doi: 10.1016/j.nutres.2011.05.006

  34. Choi SJ, Woo HD, Ko SH, Moon TW. Confocal laser scanning microscopy to investigate the effect of cooking and sodium bisulfite on in vitro digestibility of waxy sorghum flour. Cereal Chem 2008; 85(1): 65–69. doi: 10.1094/cchem-85-1

  35. Tack J, Deloose E, Ang D, Scarpellini E, Vanuytsel T, Van Oude-nhove, et al. Motilin-induced gastric contractions signal hunger in man. Gut 2016; 65(2): 214–24. doi: 10.1136/gutjnl-2014-30847

  36. Andersson U, Rosén L, Östman E, Ström K, Wierup N, BjRck I, et al. Metabolic effects of whole grain wheat and whole grain rye in the C57BL/6J mouse. Nutrition 2010; 26(2): 230–9. doi: 10.1016/j.nut.2009.06.007

  37. Mhalhal TR, Washington MC, Newman K, Heath JC, Sayegh AI. Exogenous glucagon-like peptide-1 reduces body weight and cholecystokinin-8 enhances this reduction in diet-induced obese male rats. Physiol Behav 2017; 179: 191–9. doi: 10.1016/jphysbeh.2017.06.011

  38. Lewis LD, Williams JA. Regulation of cholecystokinin secretion by food, hormones, and neural pathways in the rat. Am J Physiol 1990; 258(4 Pt 1): G512. doi: 10.1152/ajpgi.1990.258.4.G512

  39. Dong J-L, Zhang W-L, Lin J, Rui L-S. The gastrointestinal metabolic effects of oat product based-β-glucan in mice. Food Sci Biotechnol 2014; 23(3): 917–24. doi: 10.1007/s10068-014-0123-3

  40. Miyano Y, Sakata I, Kuroda K, Aizawa S, Tanaka T, Jogahara T, et al. The role of the vagus nerve in the migrating motor complex and ghrelin- and motilin-induced gastric contraction in suncus. PLoS One 2013; 8(5): e64777. doi: 10.1371/journal.pone.0064777

  41. Prinz P, Stengel A. Control of food intake by gastrointestinal peptides: mechanisms of action and possible modulation in the treatment of obesity. J Neurogastroenterol Motil 2017; 23(2): 180. doi: 10.5056/jnm16194

  42. Yada T, Damdindorj B, Rita R, Kurashina T, Ando A, Taguchi M, Koizumi M, et al. Ghrelin signalling in β-cells regulates insulin secretion and blood glucose. Diabetes Obes Metab 2014; 16(S1): 111–17. doi: 10.1111/dom.12344

  43. Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML, et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001; 50(4): 707–9. doi: 10.2337/diabetes.50.4.707

  44. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132(6): 2131–57. doi: 10.1053/jgastro.2007.03.054

  45. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379(6560): 69–72. doi: 10.1038/379069a0

  46. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016; 165(6): 1332–45. doi: 10.1016/j.cell.2016.05.041

  47. Moss CE, Glass LL, Eleftheria D, Pais R, Reimann F, et al. Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. Peptides 2016; 77: 16–20. doi: 10.1016/j.peptides.2015.06.012

  48. Karhunen LJ, Juvonen KR, Flander SM, Liukkonen KH, Laht eenmaki L, Siloaho M. A psyllium fiber-enriched meal strongly attenuates postprandial gastrointestinal peptide release in healthy young adults. J Nutr 2010; 140(4): 737–44. doi: 10.3945/jn.109.115436

  49. Wachters-Hagedoorn RE, Priebe MG, Heimweg JA, Heiner AM, Englyst KN, Holst JJ, et al. The rate of intestinal glucose absorption is correlated with plasma glucose-dependent insulinotropic polypeptide concentrations in healthy men. J Nutr 2006; 136(6): 1511–16. doi: 10.1089/jmf.2006.9.290

  50. Tsuneki H, Murata S, Anzawa Y, Soeda Y, Tokai E, Wada T. Age-related insulin resistance in hypothalamus and peripheral tissues of orexin knockout mice. Diabetologia 2008; 51(4): 657–67. doi: 10.1007/s00125-008-0929-8

  51. Nakamachi T, Matsuda K, Maruyama K, Miura T, Uchiyama M, Funahashi H, et al. Regulation by orexin of feeding behaviour and locomotor activity in the goldfish. J Neuroendocrinol 2006; 18(4): 290–7. doi: 10.1111/j.1365-2826.2006.01415.x

How to Cite
Zhou Y, Qin J, Wang Y, Wang Y, Cheng Y. Gastrointestinal and metabolic effects of noodles-based konjac glucomannan in rats. fnr [Internet]. 2019Dec.13 [cited 2020Feb.29];630. Available from:
Original Articles