Antiphotoaging effect of boiled abalone residual peptide ATPGDEG on UVB-induced keratinocyte HaCaT cells

  • Jiali Chen Guangdong Ocean University
  • Peng Liang Guangdong Ocean University
  • Zhenbang Xiao Guangdong Ocean University
  • Meifang Chen Guangdong Ocean University
  • Fang Gong Guangdong Ocean University
  • Chengyong Li Guangdong Ocean University
  • Chunxia Zhou Guangdong Ocean University
  • Pengzhi Hong Guangdong Ocean University
  • Won-Kyo Jung Pukyong National University
  • Zhong-Ji Qian Guangdong Ocean University
Keywords: abalone by-products, molecular docking, MAPKs, photoaging, type I collagen

Abstract

Introduction: A previous study has shown that Ala–Thr–Pro–Gly–Asp–Glu–Gly (ATPGDEG) peptide identified from boiled abalone by-products has high antioxidant activities and antihypertensive effect.

Objective: In this study, we further investigated its antiphotoaging activities by ultraviolet B (UVB)-induced HaCaT cells.

Result: UVB irradiation significantly increased the content of intercellular reactive oxygen species (ROS) and the production of matrix metalloproteinases (MMPs) in HaCaT cells and decreased its content of collagen. First, the generation of intercellular ROS was reduced by abalone peptide in UVB-induced HaCaT cells. And activities of MMP-1 and MMP-9 were reduced by abalone peptide in a dose-dependent manner. Furthermore, western blot analysis demonstrated that abalone peptide downregulated the expression of p38, c-Jun N-terminal kinases, and extracellular signal-regulated kinases via mitogen-activated protein kinases (MAPKs) and NF-κB signaling to protect type I pro collagen and DNA damage. Molecular docking simulation confirms that abalone peptide inhibited activities of MMP-1 and MMP-9 by docking their active site, among them N-terminal Ala, C-terminal Gly, and Pro at the third position of N-terminal made a great contribution.

Conclusion and recommendation: Abalone peptide could protect type I procollagen synthesis in UVB-irradiated HaCaT cells, and it is a potential peptide for the treatment of skin photoaging in the future.

Downloads

Download data is not yet available.

References


  1. Mohamed MAA, Jung M, Lee SM, Lee TH, Kim J. Protective effect of Disporum sessile D.Don extract against UVB-induced photoaging via suppressing MMP-1 expression and collagen degradation in human skin cells. J Photochem Photobiol B 2014; 133: 73–79. doi: 10.1016/j.jphotobiol.2014.03.002

  2. Kim EJ, Kim M-K, Jin X-J, Oh J-H, Kim JE, Chung JH. Skin aging and photoaging alter fatty acids composition, including 11,14,17-eicosatrienoic acid, in the epidermis of human skin. J Korean Med Sci 2010; 25: 980. doi: 10.3346/jkms.2010.25.6.980

  3. Matsumura Y, Ananthaswamy HN. Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharm 2004; 195: 298–308. doi: 10.1016/j.taap.2003.08.019

  4. Brash DE. Sunlight and the onset of skin cancer. Trends Genet 1997; 13: 410. doi: 10.1016/s0168-9525(97)01246-89525

  5. Leirós GJ, Kusinsky AG, Balañá ME, Hagelin K. Triolein reduces MMP-1 upregulation in dermal fibroblasts generated by ROS production in UVB-irradiated keratinocytes. J Dermatol Sci 2017; 85: 124–130. doi: 10.1016/j.jdermsci.2016.11.010

  6. Ho JN, Lee YH, Park JS, Jun WJ, Kim HK, Hong BS, et al. Protective effects of aucubin isolated from Eucommia ulmoides against UVB-induced oxidative stress in human skin fibroblasts. Bio Pharm Bull 2005; 28: 1244–1248. doi: 10.1248/bpb.28.1244

  7. Amar S, Smith L, Fields GB. Matrix metalloproteinase collagenolysis in health and disease. Biochim Biophys Acta Mol Cell Res 2017; 1864: 1940–1951. doi: 10.1016/j.bbamcr.2017.04.015

  8. Frederick J. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991; 5: 2145–2154. doi: 10.1096/fasebj.5.8.1850705

  9. Moscatelli D, Rifkin DB. Membrane and matrix localization of proteinases: a common theme in tumor cell invasion and angiogenesis. Biochim Biophys Acta Rev Cancer 1988; 948: 67–85. doi: 10.1016/0304-419X(88)90005-4

  10. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 2016; 31: 177–183. doi: 10.3109/14756366.2016.1161620

  11. Varani J, Perone P, Fligiel SEG, Fisher GJ, Voorhees JJ. Inhibition of Type I Procollagen production in photodamage: correlation between presence of high molecular weight collagen fragments and reduced procollagen synthesis. J Invest Dermatol 2002; 119: 122–129. doi: 10.1046/j.1523-1747.2002.01810.x

  12. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92: 827–839. doi: 10.1161/01.RES.0000070112.80711.3D

  13. Lauer-Fields JL, Juska D, Fields GB. Matrix metalloproteinases and collagen catabolism. Biopolymers 2002; 66: 19–32. doi: 10.1002/bip.10201

  14. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 2001; 13: 534–540. doi: 10.1016/S0955-0674(00)00248-9

  15. Brennan M, Bhatti H, Nerusu KC, Bhagavathula N, Kang S, Fisher GJ, et al. Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem Photobiol 2003; 78: 6. doi: 10.1562/0031-8655(2003)0780043MMITMC2.0.CO2

  16. Fisher JF, Mobashery S. Recent advances in MMP inhibitor design. Cancer Metast Rev 2006; 25: 115–136. doi: 10.1007/s10555-006-7894-9

  17. Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 1997; 137: 1445–1457. doi: 10.1083/jcb.137.6.1445

  18. Chen T, Hou H, Fan Y, Wang S, Chen Q, Si L, et al. Protective effect of gelatin peptides from pacific cod skin against photoaging by inhibiting the expression of MMPs via MAPK signaling pathway. J Photochem Photobiol B 2016; 165: 34–41. doi: 10.1016/j.jphotobiol.2016.10.015

  19. Inomata S, Matsunaga Y, Amano S, Takada K, Kobayashi K, Tsunenaga M, et al. Possible involvement of gelastinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse. J Invest Dermatol 2003; 120: 128–134. doi: 10.1046/j.1523-1747.2003.12021.x

  20. Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 2016; 17: 868. doi: 10.3390/ijms17060868

  21. Buechner N, Schroeder P, Jakob S, Kunze K, Maresch T, Calles C, et al. Changes of MMP-1 and collagen type Iα1 by UVA, UVB and IRA are differentially regulated by Trx-1. Exp Gerontol 2008; 43: 633–637. doi: 10.1016/j.exger.2008.04.009

  22. Sharma SD, Meeran SM, Katiyar SK. Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor- B signaling in in vivo SKH-1 hairless mice. Mol Cancer Ther 2007; 6: 995–1005. doi: 10.1158/1535-7163.MCT-06-0661

  23. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410: 37–40. doi: 10.1038/35065000

  24. Doyle GAR, Pierce RA, Parks WC. Transcriptional induction of collagenase-1 in differentiated monocyte-like (U937) cells is regulated by AP-1 and an upstream C/EBP-beta site. J Biol Chem 1997; 272: 11840–11849. doi: 10.1074/jbc.272.18.11840

  25. Reunanen N, Westermarck J, Häkkinen L, Holmström TH, Elo I, Eriksson JE, et al. Enhancement of fibroblast collagenase (matrix metalloproteinase-1) gene expression by ceramide is mediated by extracellular signal-regulated and stress-activated protein kinase pathways. J Biol Chem 1998; 273: 5137–5145. doi: 10.1074/jbc.273.9.5137

  26. Fanjul-Fernández M, Folgueras AR, Cabrera S, López-Otín C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta Mol Cell Res 2010; 1803: 3–19. doi: 10.1016/j.bbamcr.2009.07.004

  27. Chiang H-M, Chen H-C, Chiu H-H, Chen C-W, Wang S-M, Wen K-C. Neonauclea reticulata (Havil.) Merr stimulates skin regeneration after UVB exposure via ROS scavenging and modulation of the MAPK/MMPs/Collagen Pathway. Evid Based Complement Alternat Med 2013; 2013: 1–9. doi: 10.1155/2013/324864

  28. Park J-E, Pyun H-B, Woo SW, Jeong J-H, Hwang J-K. The protective effect of Kaempferia parviflora extract on UVB-induced skin photoaging in hairless mice: antiphotoaging effect of Kaempferia parviflora. Photodermatol Photo 2014; 30: 237–245. doi: 10.1111/phpp.12097

  29. Khan N, Syed DN, Pal HC, Mukhtar H, Afaq F. Pomegranate fruit extract inhibits UVB-induced inflammation and proliferation by modulating NF-κB and MAPK signaling pathways in mouse skin. Photochem Photobiol 2012; 88: 1126–1134. doi: 10.1111/j.1751-1097.2011.01063.x

  30. Li H, Li Z, Peng L, Jiang N, Liu Q, Zhang E, et al. Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage. Free Radical Res 2017; 51: 200–210. doi: 10.1080/10715762.2017.1294755

  31. Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ. Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc 2009; 14: 20–24. doi: 10.1038/jidsymp.2009.8

  32. Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation – A review. Int J Cosmetic Sci 2005; 27: 17–34. doi: 10.1111/j.1467-2494.2004.00241.x

  33. Lee C-W, Lin Z-C, Hsu L-F, Fang J-Y, Chiang Y-C, Tsai M-H, et al. Eupafolin ameliorates COX-2 expression and PGE2 production in particulate pollutants-exposed human keratinocytes through ROS/MAPKs pathways. J Ethnopharmacol 2016; 189: 300–309. doi: 10.1016/j.jep.2016.05.002

  34. Fisher GJ, Wang Z, Datta SC, Varani J, Kang S, Voorhees JJ. Pathophysiology of premature skin aging induced by ultraviolet light. N Engl J Med 1997; 337: 1419–1429. doi: 10.1056/NEJM199711133372003

  35. Mau A, Jha R. Aquaculture of two commercially important molluscs (abalone and limpet): existing knowledge and future prospects. Rev Aquacult 2018; 10: 611–625. doi: 10.1111/raq.12190

  36. Cook PA. Recent trends in worldwide abalone production. J Shellfish Res 2016; 35: 581–583. doi: 10.2983/035.035.0302

  37. Uchida H, Sasaki T, Uchida NorikoA, Takasuka N, Endo Y, Kamiya H. Oncostatic and immunomodulatory effects of a glycoprotein fraction from water extract of abalone, Haliotis discus hannai. Cancer Immunol Immunother 1987; 24: 207–212. doi: 10.1007/bf00205631

  38. Qian Z-J, Zhang YY, Oh G-W, Heo S-Y, Park WS, Choi I-W, et al. Antioxidant and angiotensin I converting enzyme inhibition effects and antihypertensive effect in spontaneously hyertensive rats of peptide isolated from boiled abalone by-products, Hallotis discus hannai. J Aquat Food Prod Tech 2018; 27: 946–960. doi: 10.1080/10498850.2018.1518361

  39. Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 1989; 119: 203–210. doi: 10.1016/0022-1759(89)90397-9

  40. Choi MS, Yoo MS, Son DJ, Jung HY, Lee SH, Jung JK, et al. Increase of collagen synthesis by obovatol through stimulation of the TGF-β signaling and inhibition of matrix metalloproteinase in UVB-irradiated human fibroblast. J Dermatol Sci 2007; 46: 127–137. doi: 10.1016/j.jdermsci.2007.02.001

  41. Li H, Gao A, Jiang N, Liu Q, Liang B, Li R, et al. Protective Effect of curcumin against acute ultraviolet B irradiation-induced photo-damage. Photochem Photobiol 2016; 92: 808–815. doi: 10.1111/php.12628

  42. Baumann B, Weber CK, Troppmair J, Whiteside S, Israel A, Rapp UR, et al. Raf induces NF-κB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci USA 2000; 97: 4615–4620. doi: 10.1073/pnas.080583397

  43. Lu Y, Liu Y, Yang C. Evaluating in vitro DNA damage using comet assay. J Vis Exp 2017; 128: e56450. Available from: https://www.jove.com/video/56450/evaluating-in-vitro-dna-damage-using-comet-assay

  44. Xuan SH, Park YM, Ha JH, Jeong YJ, Park SN. The effect of dehydroglyasperin C on UVB–mediated MMPs expression in human HaCaT cells. Pharmacol Rep 2017; 69: 1224–1231. doi: 10.1016/j.pharep.2017.05.012

  45. Ryu B, Qian Z-J, Kim M-M, Nam KW, Kim S-K. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiat Phys Chem 2009; 78: 98–105. doi: 10.1016/j.radphyschem.2008.09.001

  46. Kim M-J, Woo SW, Kim M-S, Park J-E, Hwang J-K. Anti-photoaging effect of aaptamine in UVB-irradiated human dermal fibroblasts and epidermal keratinocytes. J Asian Nat Prod Res 2014; 16: 1139–1147. doi: 10.1080/10286020.2014.983092

  47. Zhao P, Alam M, Lee S-H. Protection of UVB-induced photoaging by Fuzhuan-Brick tea aqueous extract via MAPKs/Nrf2-mediated down-regulation of MMP-1. Nutrients 2018; 11: 60. doi: 10.3390/nu11010060

  48. Liu S, You L, Zhao Y, Chang X. Hawthorn polyphenol extract inhibits UVB-induced skin photoaging by regulating MMP expression and type I procollagen production in mice. J Agric Food Chem 2018; 66: 8537–8546. doi: 10.1021/acs.jafc.8b02785

  49. Tanaka K, Hasegawa J, Asamitsu K, Okamoto T. Magnolia ovovata extract and its active component magnolol prevent skin photoaging via inhibition of nuclear factor κB. Eur J Pharmacol 2007; 565: 212–219. doi: 10.1016/j.ejphar.2007.01.095

  50. Englaro W, Dérijard B, Ortonne J-P, Ballotti R. Solar ultraviolet light activates extracellular signal-regulated kinases and the ternary complex factor in human normal keratinocytes. Oncogene 1998; 16: 661–664. doi: 10.1038/sj.onc.1201536

  51. Tu M, Cheng S, Lu W, Du M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived proteIn: sequence, structure, and functions. Trend Anal Chem 2018; 105: 7–17. doi: 10.1016/j.trac.2018.04.005

  52. Nanjan P, Nambiar J, Nair BG, Banerji A. Synthesis and discovery of (I-3,II-3)-biacacetin as a novel non-zinc binding inhibitor of MMP-2 and MMP-9. Bioorgan Med Chem 2015; 23: 3781–3787. doi: 10.1016/j.bmc.2015.03.084

  53. Yuan H, Lu W, Wang L, Shan L, Li H, Huang J, et al. Synthesis of derivatives of methyl rosmarinate and their inhibitory activities against matrix metalloproteinase-1 (MMP-1). Eur J Med Chem 2013; 62: 148–157. doi: 10.1016/j.ejmech.2012.09.047

  54. Sarkar J, Nandy SK, Chowdhury A, Tapati C, Sajal C. Inhibition of MMP-9 by green tea catechins and prediction of their interaction by molecular docking analysis. Biomed Pharmacother 2016; 84: 340–347. doi: 10.1016/j.biopha.2016.09.049

  55. Sun L, Liu Q, Fan J, Li X, Zhuang Y. Purification and characterization of peptides inhibiting MMP-1 activity with C-terminate of Gly-Leu from simulated gastrointestinal digestion hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. J Agric Food Chem 2017; 66: 593–601. doi: 10.1021/acs.jafc.7b04196

  56. Nguyen V-T, Qian Z-J, Ryu B, Kim K-N, Kim D, Kim Y-M, et al. Matrix metalloproteinases (MMPs) inhibitory effects of an octameric oligopeptide isolated from abalone Haliotis discus hannai. Food Chem 2013; 141: 503–509. doi: 10.1016/j.foodchem.2013.03.038

Published
2019-11-08
How to Cite
Chen J., Liang P., Xiao Z., Chen M., Gong F., Li C., Zhou C., Hong P., Jung W.-K., & Qian Z.-J. (2019). Antiphotoaging effect of boiled abalone residual peptide ATPGDEG on UVB-induced keratinocyte HaCaT cells. Food & Nutrition Research, 63. https://doi.org/10.29219/fnr.v63.3508
Section
Original Articles