Genistein prevents bone loss in type 2 diabetic rats induced by streptozotocin

  • Rongrong Lu Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China
  • Zicong Zheng Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China
  • Yimin Yin Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China
  • Zhuoqin Jiang Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China
Keywords: genistein;, diabetic osteoporosis;, inflammation;, osteoclasts;, adipocytes


Background: Diabetic osteoporosis has become a severe public health problem in the aging societies. Genistein has been reported to play an important role in preventing and treating metabolic diseases via its anti-inflammatory, antioxidant, anti-estrogenic, and estrogen-like functions.

Objective: We aimed to investigate whether genistein exerts bone-protective effect on diabetic rats induced by 35 mg/kg streptozotocin (STZ) plus a 4-week high-fat diet.

Design: Sprague–Dawley rats were randomly divided into four groups: (1) control group, (2) type 2 diabetes mellitus (T2DM) model group, (3) T2DM with 10 mg/kg genistein, and (4) T2DM with 30 mg/kg genistein. After an 8-week treatment with genistein, the femurs, tibias, and blood were collected from all rats for further analysis.

Results: Genistein at 10 mg/kg showed little effect on diabetic osteoporosis, whereas genistein at 30 mg/kg significantly improved glucose and bone metabolisms compared with diabetic rats. Our results showed that 30 mg/ kg genistein significantly increased bone mineral density, serum osteocalcin, and bone alkaline phosphatase. Genistein also effectively lowered fasting blood glucose, tartrate-resistant acid phosphatase 5b, tumor necrosis factor-α, interleukin-6, and numbers of adipocytes and osteoclasts. Compared with the T2DM group, protein levels of receptor activator of nuclear factor κB ligand (RANKL) and peroxisome proliferator-activated receptor- γ (PPAR-γ) were decreased, while protein levels of osteoprotegerin (OPG), β-catenin, and runt-related transcription factor 2 (Runx-2) were increased after genistein intervention.

Conclusion: Genistein could effectively improve abnormal bone metabolism in STZ-induced diabetic rats; the underlying molecular mechanisms might be related to OPG/RANKL, PPAR-γ, and β-catenin/Runx-2 pathways.


Download data is not yet available.

Author Biography

Zhuoqin Jiang, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People’s Republic of China

A professor in Department of Nutrition, School of Public Health, Sun Yat-Sen University.


  1. Cho NH, Shaw JE, Karuranga S, Huang Y, Da RFJ, Ohlrogge AW, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138: 271–81. doi: 10.1016/j.diabres.2018.02.023

  2. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006; 17(12): 1726–33. doi: 10.1007/s00198-006-0172-4

  3. Albright F, Reifenstein EC. The parathyriod glands and metabolic bone disease: selected studies. Philadelphia Baltimore: Williams & Wilkins Co 1948; 188.

  4. Valderrabano RJ, Linares MI. Diabetes mellitus and bone health: epidemiology, etiology and implications for fracture risk stratification. Clin Diabetes Endocrinol 2018; 4: 9. doi: 10.1186/s40842-018-0060-9

  5. 5. Carnevale V, Romagnoli E, D’Erasmo L, D’Erasmo E. Bone damage in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 2014; 24(11): 1151–7. doi: 10.1016/j.numecd.2014.06.013
  6. Goldshtein I, Nguyen AM, DePapp AE, Ish-Shalom S, Chandler JM, Chodick G, et al. Epidemiology and correlates of osteoporotic fractures among type 2 diabetic patients. Arch Osteoporos 2018; 13(1): 15. doi: 10.1007/s11657-018-0432-x

  7. Rathinavelu S, Guidry-Elizondo C, Banu J. Molecular modulation of osteoblasts and osteoclasts in type 2 diabetes. J Diabetes Res 2018; 2018: 6354787. doi: 10.1155/2018/6354787

  8. 8. Kalaitzoglou E, Fowlkes JL, Popescu I, Thrailkill KM. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev 2019; 35(2): e3100. doi: 10.1002/dmrr.3100
  9. Shen CL, Kaur G, Wanders D, Sharma S, Tomison MD, Ramalingam L, et al. Annatto-extracted tocotrienols improve glucose homeostasis and bone properties in high-fat diet-induced type 2 diabetic mice by decreasing the inflammatory response. Sci Rep 2018; 8(1): 11377. doi: 10.1038/s41598-018-29063-9

  10. Jiao H, Xiao E, Graves DT. Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep 2015; 13(5): 327–35. doi: 10.1007/s11914-015-0286-8

  11. Garcia-Hernandez A, Arzate H, Gil-Chavarria I, Rojo R, Moreno-Fierros L. High glucose concentrations alter the biomineralization process in human osteoblastic cells. Bone. 2012; 50(1): 276–88. doi: 10.1016/j.bone.2011.10.032

  12. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. The Relationship between metabolic syndrome and osteoporosis: a review. Nutrients 2016; 8(6): E347. doi: 10.3390/nu8060347

  13. Pieralice S, Vigevano F, Del TR, Napoli N, Maddaloni E. Lifestyle management of diabetes: implications for the bone-vascular axis. Curr Diab Rep 2018; 18(10): 84. doi: 10.1007/s11892-018-1060-y

  14. Liu W, Zhang X. Receptor activator of nuclear factor-kappaB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues (review). Mol Med Rep 2015; 11(5): 3212–8. doi: 10.3892/mmr.2015.3152

  15. Ma R, Wang L, Zhao B, Liu C, Liu H, Zhu R, et al. Diabetes perturbs bone microarchitecture and bone strength through regulation of Sema3A/IGF-1/beta-Catenin in rats. Cell Physiol Biochem 2017; 41(1): 55–66. doi: 10.1159/000455936

  16. Xiao Y, Zhang S, Tong H, Shi S. Comprehensive evaluation of the role of soy and isoflavone supplementation in humans and animals over the past two decades. Phytother Res 2018; 32(3): 384–94. doi: 10.1002/ptr.5966

  17. Krizova L, Dadakova K, Kasparovska J, Kasparovsky T. Isoflavones. Molecules 2019; 24(6). doi: 10.3390/molecules24061076

  18. Fu SW, Zeng GF, Zong SH, Zhang ZY, Zou B, Fang Y, et al. Systematic review and meta-analysis of the bone protective effect of phytoestrogens on osteoporosis in ovariectomized rats. Nutr Res 2014; 34(6): 467–77. doi: 10.1016/j.nutres.2014.05.003

  19. Sathyapalan T, Aye M, Rigby AS, Fraser WD, Kilpatrick ES, Atkin SL. Effect of soy on bone turn-over markers in men with type 2 diabetes and hypogonadism – a randomised controlled study. Sci Rep 2017; 7(1): 15366. doi: 10.1038/s41598-017-15402-9

  20. Odle B, Dennison N, Al-Nakkash L, Broderick TL, Plochocki JH. Genistein treatment improves fracture resistance in obese diabetic mice. BMC Endocr Disord 2017; 17(1): 1. doi: 10.1186/s12902-016-0144-4

  21. Michelin RM, Al-Nakkash L, Broderick TL, Plochocki JH. Genistein treatment increases bone mass in obese, hyperglycemic mice. Diabetes Metab Syndr Obes 2016; 9: 63–70. doi: 10.2147/DMSO.S97600

  22. Liang YL, Du MQ, Lai WX, Li SH, Cai L. Research progress in the rodent model of type 2 diabetic osteoporosis. Chin J Osteoporosis 2016; 22(9): 1164–7. doi: 10.3969/j.issn.1006-7108.2016.09.019

  23. Skovso S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig 2014; 5(4): 349–58. doi: 10.1111/​jdi.12235

  24. Furman BL. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol 2015; 70: 5.47.1–.20. doi: 10.1002/​0471141755.ph0547s70

  25. Guo CJ, Xie JJ, Hong RH, Pan HS, Zhang FG, Liang YM. Puerarin alleviates streptozotocin (STZ)-induced osteoporosis in rats through suppressing inflammation and apoptosis via HDAC1/HDAC3 signaling. Biomed Pharmacother 2019; 115: 108570. doi: 10.1016/j.biopha.2019.01.031

  26. 26. Ying X, Chen X, Wang T, Zheng W, Chen L, Xu Y. Possible osteoprotective effects of myricetin in STZ induced diabetic osteoporosis in rats. Eur J Pharmacol 2020; 866: 172805. doi: 10.1016/j.ejphar.2019.172805
  27. Yang M, Xie J, Lei X, Song Z, Gong Y, Liu H, et al. Tubeimoside I suppresses diabetes-induced bone loss in rats, osteoclast formation, and RANKL-induced nuclear factor-kappaB pathway. Int Immunopharmacol 2020; 80: 106202. doi: 10.1016/j.intimp.​2020.106202

  28. Tian C, Chang H, La X, Li JA. Wushenziye formula improves skeletal muscle insulin resistance in type 2 diabetes mellitus via PTP1B-IRS1-Akt-GLUT4 signaling pathway. Evid Based Complement Alternat Med 2017; 2017: 4393529. doi: 10.1155/​2017/4393529

  29. Al-Trad B, Alkhateeb H, Alsmadi W, Al-Zoubi M. Eugenol ameliorates insulin resistance, oxidative stress and inflammation in high fat-diet/streptozotocin-induced diabetic rat. Life Sci 2019; 216: 183–8. doi: 10.1016/j.lfs.2018.11.034

  30. Cao JJ, Gregoire BR, Shen CL. A high-fat diet decreases bone mass in growing mice with systemic chronic inflammation induced by low-dose, slow-release lipopolysaccharide pellets. J Nutr 2017; 147(10): 1909–16. doi: 10.3945/jn.117.248302

  31. Rivoira M, Rodriguez V, Picotto G, Battaglino R, de Talamoni NT. Naringin prevents bone loss in a rat model of type 1 Diabetes mellitus. Arch Biochem Biophys 2018; 637: 56–63. doi: 10.1016/

  32. Biver E, Chopin F, Coiffier G, Brentano TF, Bouvard B, Garnero P, et al. Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis. Joint Bone Spine 2012; 79(1): 20–5. doi: 10.1016/j.jbspin.2011.05.003

  33. Rissanen JP, Suominen MI, Peng Z, Halleen JM. Secreted tartrate-resistant acid phosphatase 5b is a Marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model. Calcif Tissue Int 2008; 82(2): 108–15. doi: 10.1007/s00223-007-9091-4

  34. Mukund V, Mukund D, Sharma V, Mannarapu M, Alam A. GenisteIn: its role in metabolic diseases and cancer. Crit Rev Oncol Hematol 2017; 119: 13–22. doi: 10.1016/j.critrevonc.2017.09.004

  35. Jiang N, Xia W. Assessment of bone quality in patients with diabetes mellitus. Osteoporos Int 2018; 29(8): 1721–36. doi: 10.1007/s00198-018-4532-7

  36. Kanazawa I, Notsu M, Miyake H, Tanaka K, Sugimoto T. Assessment using serum insulin-like growth factor-I and bone mineral density is useful for detecting prevalent vertebral fractures in patients with type 2 diabetes mellitus. Osteoporos Int 2018; 29(11): 2527–35. doi: 10.1007/s00198-018-4638-y

  37. Szulc P. Bone turnover: biology and assessment tools. Best Pract Res Clin Endocrinol Metab 2018; 32(5): 725–38. doi: 10.1016/j.beem.2018.05.003

  38. Xie H, Wang Q, Zhang X, Wang T, Hu W, Manicum T, et al. Possible therapeutic potential of berberine in the treatment of STZ plus HFD-induced diabetic osteoporosis. Biomed Pharmacother 2018; 108: 280–7. doi: 10.1016/j.biopha.2018.08.131

  39. Li CW, Liang B, Shi XL, Wang H. Opg/Rankl mRNA dynamic expression in the bone tissue of ovariectomized rats with osteoporosis. Genet Mol Res 2015; 14(3): 9215–24. doi: 10.4238/2015.August.10.1

  40. Mitama Y, Fujiwara S, Yoneda M, Kira S, Kohno N. Association of type 2 diabetes and an inflammatory marker with incident bone fracture among a Japanese cohort. J Diabetes Investig 2017; 8(5): 709–15. doi: 10.1111/jdi.12632

  41. 41. Iqbal J, Yuen T, Sun L, Zaidi M. From the gut to the strut: where inflammation reigns, bone abstains. J Clin Invest 2016; 126(6): 2045–8. doi: 10.1172/JCI87430
    42. Alblowi J, Kayal RA, Siqueira M, McKenzie E, Krothapalli N, McLean J, et al. High levels of tumor necrosis factor-alpha contribute to accelerated loss of cartilage in diabetic fracture healing. Am J Pathol 2009; 175(4): 1574–85. doi: 10.2353/ajpath.2009.090148.
  42. Lei C, Xueming H, Ruihang D. MLN64 deletion suppresses RANKL-induced osteoclastic differentiation and attenuates diabetic osteoporosis in streptozotocin (STZ)-induced mice. Biochem Biophys Res Commun 2018; 505(4): 1228–35. doi: 10.1016/j.bbrc.2018.10.007

  43. Shen C, Yuan Y, Li F, Hu Y, Song Y, Zhao S, et al. Mechanism of genistein regulating the differentiation of vascular smooth muscle cells into osteoblasts via the OPG/RANKL pathway. Oncotarget 2017; 8(44): 76857–64. doi: 10.18632/oncotarget.​20167

  44. Sun J, Sun WJ, Li ZY, Li L, Wang Y, Zhao Y, et al. Daidzein increases OPG/RANKL ratio and suppresses IL-6 in MG-63 osteoblast cells. Int Immunopharmacol 2016; 40: 32–40. doi: 10.1016/j.intimp.2016.08.014

  45. Li YQ, Xing XH, Wang H, Weng XL, Yu SB, Dong GY. Dose-dependent effects of genistein on bone homeostasis in rats’ mandibular subchondral bone. Acta Pharmacol Sin 2012; 33(1): 66–74. doi: 10.1038/aps.2011.136

  46. Messina M, Nagata C, Wu AH. Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer 2006; 55(1): 1–12. doi: 10.1207/s15327914nc5501_1.

  47. El-Kordy EA, Alshahrani AM. Effect of genistein, a natural soy isoflavone, on pancreatic beta-cells of streptozotocin-induced diabetic rats: histological and immunohistochemical study. J Microsc Ultrastruct 2015; 3(3): 108–19. doi: 10.1016/j.jmau.2015.03.005.

  48. Wang R, Gao D, Zhou Y, Chen L, Luo B, Yu Y, et al. High glucose impaired estrogen receptor alpha signaling via beta-catenin in osteoblastic MC3T3-E1. J Steroid Biochem Mol Biol 2017; 174: 276–83. doi: 10.1016/j.jsbmb.2017.10.008.

  49. Yao Q, Yu C, Zhang X, Zhang K, Guo J, Song L. Wnt/beta-catenin signaling in osteoblasts regulates global energy metabolism. Bone 2017; 97: 175–83. doi: 10.1016/j.bone.2017.01.028

How to Cite
Lu R., Zheng Z., Yin Y., & Jiang Z. (2020). Genistein prevents bone loss in type 2 diabetic rats induced by streptozotocin. Food & Nutrition Research, 64.
Original Articles