Long-term caloric restriction activates the myocardial SIRT1/ AMPK/PGC-1α pathway in C57BL/6J male mice

  • Lina Ma
  • Rong Wang
  • Hongjuan Wang
  • Yaxin Zhang
  • Zhiwei Zhao
Keywords: caloric restriction, signaling pathway, SIRT1, AMPK, mTOR


Background: Caloric restriction (CR) can help in improving heart function. There is as yet no consensus on the mechanism of the effect of CR. Silent mating-type information regulation 1 (SIRT1), adenosine monophosphate- activated protein kinase (AMPK), and mTOR are key players in metabolic stress management. We aimed to explore the effect of CR on the myocardial SIRT1/AMPK/mTOR pathway in mice.

Methods: Thirty-six 6-week-old male C57BL/6J mice were randomly divided into three groups: normal control group (NC group, n = 12), high-energy group (HE group, n = 12) and CR group (n = 12) according to different diets. After 11 months, western blot was used to examine proteins such as p-AMPK, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), SIRT1, and p-mTOR, whereas real-time PCR was used to examine the expression of AMPK, PGC-1α, and SIRT1 transcripts.

Results: Compared to the HE group, the CR group displayed increased expression of myocardial p-AMPK protein, SIRT1 protein and mRNA, and PGC-1a mRNA. However, no difference was observed in the expression of p-mTOR protein and mTOR mRNA in the myocardium among the three groups.

Conclusions: CR improves the SIRT1/AMPK/PGC-1α pathway in mice myocardium with no effect on the mTOR pathway.


Download data is not yet available.


  1. Pifferi F, Aujard F. Caloric restriction, longevity and aging: recent contributions from human and non-human primate studies. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95: 109702. doi: 10.1016/j.pnpbp.2019.109702

  2. Weindruch R, Walford RL, Fligiel S, Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 1986; 116(4): 641–54. doi: 10.1093/jn/116.4.641

  3. Edwards IJ, Rudel LL, Terry JG, Kemnitz JW, Weindruch R, Zaccaro DJ, et al. Caloric restriction lowers plasma lipoprotein (a) in male but not female rhesus monkeys. Exp Gerontol 2001; 36(8): 1413–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11602214 [cited 31 July 2019].

  4. Pereira MA, Swain J, Goldfine AB, Rifai N, Ludwig DS. Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA 2004; 292(20): 2482–90. doi: 10.1001/jama.292.20.2482

  5. Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 2004; 101(17): 6659–63. doi: 10.1073/pnas.0308291101

  6. Nicoll R, Henein MY. Caloric restriction and its effect on blood pressure, heart rate variability and arterial stiffness and dilatation: a review of the evidence. Int J Mol Sci 2018; 19(3): pii: E751. doi: 10.3390/ijms19030751

  7. Ma L, Li Y. SIRT1: role in cardiovascular biology. Clin Chim Acta 2015; 440: 8–15. doi: 10.1016/j.cca.2014.10.036

  8. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 2008; 3(6): e2264. doi: 10.1371/journal.pone.0002264

  9. Ma L, Wang R, Dong W, Zhao Z. Caloric restriction can improve learning and memory in C57/BL mice probably via regulation of the AMPK signaling pathway. Exp Gerontol 2018; 102: 28–35 doi: 10.1016/j.exger.2017.11.013

  10. Meijles DN, Zoumpoulidou G, Markou T, Rostron KA, Patel R, Lay K, et al. The cardiomyocyte ‘redox rheostat’: redox signalling via the AMPK-mTOR axis and regulation of gene and protein expression balancing survival and death. J Mol Cell Cardiol 2019; 129: 118–29. doi: 10.1016/j.yjmcc.2019.02.006

  11. Dang Y, Ling S, Duan J, Ma J, Ni R, Xu J-W. Bavachalcone-induced manganese superoxide dismutase expression through the AMP-activated protein kinase pathway in human endothelial cells. Pharmacology 2015; 95(3–4): 105–10. doi: 10.1159/000375452

  12. Lefevre M, Redman LM, Heilbronn LK, Smith JV, Martin CK, Rood JC, et al. Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis 2009; 203(1): 206–13. doi: 10.1016/j.atherosclerosis.2008.05.036

  13. McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, et al. The mammalian SIR2 protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 2003; 23(1): 38–54. doi: 10.1128/MCB.23.1.38-54.2003

  14. Banks AS, Kon N, Knight C, Matsumoto M, Gutiérrez-Juárez R, Rossetti L, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008; 8(4): 333–41. doi: 10.1016/j.cmet.2008.08.014

  15. Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007; 6(6): 759–67. doi: 10.1111/j.1474-9726.2007.00335.x

  16. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006; 127(6): 1109–22. doi: 10.1016/j.cell.2006.11.013

  17. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450(7170): 712–6. doi: 10.1038/nature06261

  18. Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y. Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 2007; 43(5): 571–9. doi: 10.1016/j.yjmcc.2007.08.008

  19. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 2007; 104(37): 14855–60. doi: 10.1073/pnas.0704329104

  20. Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G, et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 2008; 80(2): 191–9. doi: 10.1093/cvr/cvn224

  21. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005; 310(5746): 314–7. doi: 10.1126/science.1117728

  22. Raitakari M, Ilvonen T, Ahotupa M, Lehtimäki T, Harmoinen A, Suominen P, et al. Weight reduction with very-low-caloric diet and endothelial function in overweight adults: role of plasma glucose. Arterioscler Thromb Vasc Biol 2004; 24(1): 124–8. doi: 10.1161/01.ATV.0000109749.11042.7c

  23. Sasaki S, Higashi Y, Nakagawa K, Kimura M, Noma K, Sasaki S, et al. A low-calorie diet improves endothelium-dependent vasodilation in obese patients with essential hypertension. Am J Hypertens 2002; 15(4): 302–9. doi: 10.1016/S0895-7061(01)02322-6

  24. Ungvari Z, Orosz Z, Labinskyy N, Rivera A, Xiangmin Z, Smith K, et al. Increased mitochondrial H2O2 production promotes endothelial NF-kappaB activation in aged rat arteries. Am J Physiol Heart Circ Physiol 2007; 293(1): H37–47. doi: 10.1152/ajpheart.01346.2006

  25. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, et al. Silent information regulator 2α, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 2004; 95(10): 971–80. doi: 10.1161/01.RES.0000147557.75257.ff

  26. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 2003; 100(19): 10794–9. doi: 10.1073/pnas.1934713100

  27. Hsu C-P, Odewale I, Alcendor RR, Sadoshima J. Sirt1 protects the heart from aging and stress. Biol Chem 2008; 389(3): 221–31. doi: 10.1515/BC.2008.032

  28. Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 2010; 11(3): 213–9. doi: 10.1016/j.cmet.2010.02.006

  29. Xing Y, Musi N, Fujii N, Zou L, Luptak I, Hirshman MF, et al. Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative α2 subunit of AMP-activated protein kinase. J Biol Chem 2003; 278(31): 28372–7. doi: 10.1074/jbc.M303521200

  30. García-Prieto CF, Pulido-Olmo H, Ruiz-Hurtado G, Gil-Ortega M, Aranguez I, Rubio MA, et al. Mild caloric restriction reduces blood pressure and activates endothelial AMPK-PI3K-Akt-eNOS pathway in obese Zucker rats. Vascul Pharmacol 2015; 65–6: 3–12. doi: 10.1016/j.vph.2014.12.001

  31. Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 2000; 10(20): 1247–55. doi: 10.1016/S0960-9822(00)00742-9

  32. Deldicque L, Theisen D, Francaux M. Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur J Appl Physiol 2005; 94(1–2): 1–10. doi: 10.1007/s00421-004-1255-6

  33. Ido Y, Carling D, Ruderman N. Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes 2002; 51(1): 159–67. doi: 10.2337/DIABETES.51.1.159

  34. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion. Circ Res 2007; 100(6): 914–22. doi: 10.1161/01.RES.0000261924.76669.36

  35. Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 2008; 57(3): 696–705. doi: 10.2337/db07-1098

  36. Viollet B, Guigas B, Garcia NS, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformIn: an overview. Clin Sci 2012; 122(6): 253–70. doi: 10.1042/CS20110386

  37. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012; 15(5): 675–90. doi: 10.1016/j.cmet.2012.04.003

  38. Fulco M, Sartorelli V. Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell Cycle 2008; 7(23): 3669–79. doi: 10.4161/cc.7.23.7164

  39. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 2012; 11(2): 230–41. doi: 10.1016/j.arr.2011.12.005

  40. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol Mech Dis 2010; 5(1): 253–95. doi: 10.1146/annurev.pathol.4.110807.092250

  41. Zheng Q, Zhao K, Han X, Huff AF, Cui Q, Babcock SA, et al. Inhibition of AMPK accentuates prolonged caloric restriction-induced change in cardiac contractile function through disruption of compensatory autophagy. Biochim Biophys Acta 2015; 1852(2): 332–42. doi: 10.1016/j.bbadis.2014.04.023

  42. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 2010; 107(12): 1470–82. doi: 10.1161/CIRCRESAHA.110.227371

  43. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 2008; 105(9): 3374–9. doi: 10.1073/pnas.0712145105

  44. Jessen N, Koh HJ, Folmes CD, Wagg C, Fujii N, Løfgren B, et al. Ablation of LKB1 in the heart leads to energy deprivation and impaired cardiac function. Biochim Biophys Acta 2010; 1802(7–8): 593–600. doi: 10.1016/j.bbadis.2010.04.008

  45. Zhang Y, Han X, Hu N, Huff AF, Gao F, Ren J. Akt2 knockout alleviates prolonged caloric restriction-induced change in cardiac contractile function through regulation of autophagy. J Mol Cell Cardiol 2014; 71: 81–91. doi: 10.1016/j.yjmcc.2013.12.010

How to Cite
Ma, L., Wang, R., Wang, H., Zhang, Y., & Zhao, Z. (2020). Long-term caloric restriction activates the myocardial SIRT1/ AMPK/PGC-1α pathway in C57BL/6J male mice. Food & Nutrition Research, 64. https://doi.org/10.29219/fnr.v64.3668
Original Articles