A novel exopolysaccharide produced by Lactobacillus coryniformis NA-3 exhibits antioxidant and biofilm-inhibiting properties in vitro

  • Xiaoqing Xu
  • Qing Peng
  • Yuwei Zhang
  • Dandan Tian
  • Pengbo Zhang
  • Ying Huang
  • Lan Ma
  • Yu Qiao
  • Bo Shi
Keywords: Lactobacillus coryniformis NA-3; Exopolysaccharide; Antioxidant; Anti-biofilm; Inhibition; Dispersion


Background: Exopolysaccharides (EPSs) secreted from lactic acid bacteria are carbohydrate polymers with reported biological activities. In this study, we extracted and characterized the composition as well as antioxidant and biofilm-inhibitory properties of EPS from Lactobacillus coryniformis NA-3 isolated from northeast Chinese sauerkraut (Suan Cai).

Methods: Lactobacillus coryniformis NA-3 was identified with 16S rDNA amplification and Neighbor Joining (NJ) phylogenetic analysis. EPS derived from Lactobacillus coryniformis NA-3 (EPS-NA3) was analyzed, including compositions by high-performance liquid chromatography (HPLC), functional groups by Fourier-transform infrared spectroscopy (FT-IR) and glycosidic bond configuration by Hydrogen-1 Nuclear Magnetic Resonance (1H NMR). Antioxidant activity of EPS was evaluated with hydroxyl and superoxide radical-scavenging. Anti-biofilm activities of EPS-NA3 were checked through inhibition and dispersion.

Results: The monosaccharide composition of EPS included α-rhamnose, α-mannose, α-galactose, and α-glucose in a ratio of 2.6:1.0:5.0:3.3. The free radical-scavenging abilities of EPS-NA3 were 37.77% ± 1.56% and 78.87% ± 3.07% on hydroxyl and superoxide reactive oxygen species respectively. Moreover, EPS-NA3 attenuated the formation of Bacillus cereus and Salmonella typhimurium biofilms by inhibition ratios of approximately 80% and 40% respectively. Additionally, treatment with EPS-NA3 dispersed established biofilms of B. cereus and S. typhimurium by approximately 90% and 20% respectively.

Conclusion: These results suggest that EPS-NA3 may be developed as antioxidant and anti-biofilm agents for industrial and clinical applications due to its capacity of scavenging free radicals, inhibition of bacterial biofilm formation, and dispersion of established biofilms.


Download data is not yet available.


  1. Fontana C, Li S, Yang Z, Widmalm G. Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohyd Res 2015; 402: 87–94. doi: 10.1016/j.carres.2014.09.003

  2. Jia K, Tao X, Liu Z, Zhan H, He W, Zhang Z, et al. Characterization of novel exopolysaccharide of Enterococcus faecium WEFA23 from infant and demonstration of its in vitro biological properties. Int J Biol Macromol 2019; 128: 710–17. doi: 10.1016/j.ijbiomac.2018.12.245

  3. Ye G, Chen Y, Wang C, Yang R, Bin X. Purification and characterization of exopolysaccharide produced by Weissellacibaria YB-1 from pickle Chinese cabbage. Int J Biol Macromol 2018; 120: 1315–21. doi: 10.1016/j.ijbiomac.2018.09.019

  4. Behare PV, Singh R, Kumar M, Prajapati JB, Singh RP. Exopolysaccharides of lactic acid bacteria: a review. J Food Sci Tech Mys 2009; 46(1): 1–11. doi: 10.1111/j.1750-3841.2008.01020.x

  5. Xu Y, Cui Y, Yue F, Liu L, Shan Y, Liu B, et al. Exopolysaccharides produced by lactic acid bacteria and bifido bacteria: structures, physiochemical functions and applications in the food industry. Food Hydrocolloid 2019; 94: 475–499. doi: 10.1016/j.foodhyd.2019.03.032

  6. Rahbar Saadat Y, Yari Khosroushahi A, Pourghassem Gargari B. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohyd Polym 2019; 217: 79–89. doi: 10.1016/j.carbpol.2019.04.025

  7. Kumar AS, Mody K, Jha B. Bacterial exopolysaccharides – a perception. J Basic Microbiol 2007; 47(2): 103–17. doi: 10.1002/jobm.200610203

  8. Donot F, Fontana A, Baccou JC, Schorr-Galindo S. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohyd Polym 2012; 87(2): 951–62. doi: 10.1016/j.carbpol.2011.08.083

  9. Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. Fems Microbiol Rev 1990; 87(1): 113–30. doi: 10.1016/0378-1097(90)90701-q

  10. Chabot S, Yu HL, Léséleuc LD, Cloutier D, Calsteren MRV, Lessard M, et al. Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-$\gamma$ in mouse splenocytes. Le Lait 2001; 81(6): 683–97. doi: 10.1051/lait:2001157

  11. Li S, Huang R, Shah NP, Tao X, Xiong Y, Wei H. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacteriumbifidum WBIN03 and Lactobacillus plantarum R315. J Dairy Sci 2014; 97(12): 7334–43. doi: 10.3168/jds.2014-7912

  12. Zhou Y, Cui Y, Qu X. Exopolysaccharides of lactic acid bacteria: structure, bioactivity and associations: a review. Carbohyd Polym 2019; 207: 317–32. doi: 10.1016/j.carbpol.2018.11.093

  13. Xing J, Wang G, Zhang Q, Liu X, Yin B, Fang D, et al. Determining antioxidant activities of lactobacilli by cellular antioxidant assay in mammal cells. J Funct Foods 2015; 19: 554–62. doi: 10.1016/j.jff.2015.09.017

  14. Aruoma OI. Characterization of drugs as antioxidant prophylactics. Free Radical Biol Med 1996; 20(5): 675. doi: 10.1016/0891-5849(95)02110-8

  15. Liu F, Ng TB. Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci 2000; 66(8): 725–35. doi: 10.1016/s0024-3205(99)00643-8

  16. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284: 1318–22. doi: 10.1126/science.284.5418.1318

  17. Mahdhi A, Leban N, Chakroun I, Chaouch MA, Hafsa J, Fdhila K, et al. Extracellular polysaccharide derived from potential probiotic strain with antioxidant and antibacterial activities as a prebiotic agent to control pathogenic bacterial biofilm formation. Microb Pathog 2017; 109: 214–220. doi: 10.1016/j.micpath.2017.05.046

  18. Sarikaya H, Aslim B, Yuksekdag Z. Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (l-EPSs) from Lactobacilli strains. Int J Food Prop 2017; 20(2): 362. doi: 10.1080/10942912.2016.1160923

  19. Kim Y, Oh S, Kim SH. Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem Bioph Res Co 2009; 379(2): 324–9. doi: 10.1016/j.bbrc.2008.12.053

  20. Ai L, Zhang H, Guo B, Chen Wu Y. Preparation, partial characterization and bioactivity of exopolysaccharides from Lactobacillus casei LC2W. Carbohyd Polym 2008; 74(3): 353–7. doi: 10.1016/j.carbpol.2008.03.004

  21. Xiong T, Guan Q, Song S, Hao M, Xie M. Dynamic changes of lactic acid bacteria flora during Chinese sauerkraut fermentation. Food Control 2012; 26(1): 178–81. doi: 10.1016/j.foodcont.2012.01.027

  22. Fang F, Feng T, Du G, Chen J. Evaluation of the impact on food safety of a Lactobacillus coryniformis strain from pickled vegetables with degradation activity against nitrite and other undesirable compounds. Food Addit ContamPart A 2016; 33(4): 623–30. doi: 10.1080/19440049.2016.1156774

  23. Martín R, Olivares M, Marín ML, Xaus J, Fernández L, Rodríguez JM. Characterization of a reuterin-producing Lactobacillus coryniformis strain isolated from a goat’s milk cheese. Int J Food Microbiol 2005; 104(3): 267–77. doi: 10.1016/j.ijfoodmicro.2005.03.007

  24. Lara-Villoslada F, Sierra S, Martin R, Delgado S, Roiguez JM, Olivares M, et al. Safety assessment of two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus Gasseri CECT5714. J Appl Microbiol 2007; 103(1): 175–84. doi: 10.1111/j.1365-2672.2006.03225.x

  25. Olivares M, Díaz-Ropero MP, Gómez N, Lara-Villoslada F, Sierra S, Maldonado JA, et al. Oral administration of two probiotic strains, Lactobacillus gasseri CECT5714 and Lactobacillus coryniformis CECT5711, enhances the intestinal function of healthy adults. Int J Food Microbiol 2006; 107(2): 104–11. doi: 10.1016/j.ijfoodmicro.2005.08.019

  26. Ruas-Madiedo P, de Los Reyes-Gavilán CG. Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 2005; 88(3): 843–56. doi: 10.3168/jds.S0022-0302(05)72750-8

  27. Wang Y, Ahmed Z, Feng W, Li C, Song S. Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir. Int J Biol Macromol 2008; 43(3): 283–8. doi: 10.1016/j.ijbiomac.2008.06.011

  28. Waśko A, Polak-Berecka M, Skrzypek H, Kreft A. Production of exopolysaccharides by a probiotic strain of Lactobacillus rhamnosus: biosynthesis and purification methods. Acta Aliment Hung 2013; 42(2): 220–8. doi: 10.1556/AAlim.42.2013.2.9

  29. Yang C, He N, Ling X, Ye M, Zhang C, Shao W, et al. The isolation and characterization of polysaccharides from longan pulp. Sep Purif Technol 2008; 63(1): 226–30. doi: 10.1016/j.seppur.2008.05.004

  30. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956; 28(3): 350–6. doi: 10.1021/ac60111a017

  31. Wu S, Liu G, Jin W, Xiu P, Sun C. Antibiofilm and anti-Infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa. Front Microbiol 2016; 7: 102. doi: 10.3389/fmicb.2016.00102

  32. Zhang S. Antioxidative activity of lactic acid bacteria in yogurt. Afr J Microbiol Res 2011; 5(29): 5194–520. doi: 10.5897/AJMR11.997

  33. Li W, Ji J, Rui X, Yu J, Tang W, Chen X, et al. Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. Food Sci Technol 2014; 59(2): 732–9. doi: 10.1016/j.lwt.2014.06.063

  34. Cao X, Liu D, Xia Y, Cai T, He Y, Liu J. A novel polysaccharide from Lentinus edodes mycelia protects MIN6 cells against high glucose-induced damage via the MAPKs and Nrf2 pathways. Food Nutr Res 2019; 63(1): 1598. doi: 10.29219/fnr.v63.1598

  35. Wang D, Wu Q, Pan W, Hussain S, Mehmood S, Chen Y. A novel polysaccharide from the sarcodonaspratus triggers apoptosis in hela cells via induction of mitochondrial dysfunction. Food Nutr Res 2018; 62(1): 1285. doi: 10.29219/fnr.v62.1285

  36. De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. Fems Microbiol Rev 1999; 23(2): 153–77. doi: 10.1111/j.1574-6976.1999.tb00395.x

  37. Sanalibaba P, Cakmak GA. Exopolysaccharides production by lactic acid bacteria. Appl Microbiol 2016; 2(2): 1000115. doi: 10.4172/2471-9315.1000115

  38. Nataraj S, Schomäcker R, Kraume M, Mishra IM, Drews A. Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. J Membrane Sci 2008; 308(1–2): 152–61. doi: 10.1016/j.memsci.2007.09.060

  39. Zehir Şentürk D, Dertli E, Erten H, Şimşek Ö. Structural and technological characterization of ropy exopolysaccharides produced by Lactobacillus plantarum strains isolated from Tarhana. Food Sci Biotechnol 2020; 29(1): 121–29. doi: 10.1007/s10068-019-00641-5

  40. Elnahas M, Amin M, Hussein M, Shanbhag V, Ali A, Wall J. Isolation, characterization and bioactivities of an extracellular polysaccharide produced from streptomyces sp. MOE6. Molecules 2017; 22(9): 1396. doi: 10.3390/molecules22091396

  41. Ismail B, Nampoothiri KM. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol 2010; 192(12): 1049–57. doi: 10.1007/s00203-010-0636-y

  42. Gan L, Li X, Wang H, Peng B, Tian Y. Structural characterization and functional evaluation of a novel exopolysaccharide from the moderate halophile Gracilibacillus sp. SCU50. Int J Biol Macromol 2019; doi: 10.1016/j.ijbiomac.2019.11.143

  43. Yin JY, Nie SP, Chao Z, Yin W, Xie MY. Chemical characteristics and antioxidant activities of polysaccharide purified from the seeds of Plantagoasiatica L. J Sci Food Agricult 2010; 90(2): 210–17. doi: 10.1002/jsfa.3793

  44. Oleksy M, Klewicka E. Exopolysaccharides produced by Lactobacillus sp.: biosynthesis and applications. Crit Rev Food Sci 2018; 58(3): 450–62. doi: 10.1080/10408398.2016.1187112

  45. Olaya R, Kaplan JB, Jean-Marc G. Antibiofilm polysaccharides. Environ Microbiol 2013; 15(2): 334–46. doi: 10.1111/j.1462-2920.2012.02810.x

  46. Polak-Berecka M, Choma A, Waśko A, Górska S, Gamian A, Cybulska J. Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohyd Polym 2015; 117: 501–9. doi: 10.1016/j.carbpol.2014.10.006

  47. Gomaa M, Yousef N. Optimization of production and intrinsic viscosity of an exopolysaccharide from a high yielding Virgibacillus salarius BM02: study of its potential antioxidant, emulsifying properties and application in the mixotrophic cultivation of Spirulina platensis. Int J Biol Macromol 2020; 149: 552–61. doi: 10.1016/j.ijbiomac.2020.01.289 [Epub ahead of print].

  48. Magdalena PB, Adam WK, Agnieszka KK. Optimization of culture conditions for exopolysaccharide production by a probiotic strain of Lactobacillus rhamnosus E/N. Pol J Microbiol 2014; 63(2): 253–7.

  49. Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X. Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohyd Polym 2010; 82(3): 895–903. doi: 10.1016/j.carbpol.2010.06.013

  50. Muller FL, Lustgarten MS, Youngmok J, Arlan R, Holly VR. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43(4): 477–503. doi: 10.1016/j.freeradbiomed.2007.03.034

  51. Donlan RM. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 2001; 33(8): 1387–92. doi: 10.1086/322972

  52. Wang K, Niu M, Song D, Song X, Zhao J, Wu Y, et al. Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1. J Biosci Bioeng 2020; 129(2): 206–14. doi: 10.1016/j.jbiosc.2019.07.009

  53. Wang J, Zhao X, Yang Y, Zhao A, Yang Z. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int J Biol Macromol 2015; 74: 119–26. doi: 10.1016/j.ijbiomac.2014.12.006

How to Cite
Xu, X., Peng, Q., Zhang, Y., Tian, D., Zhang, P., Huang, Y., Ma, L., Qiao, Y., & Shi, B. (2020). A novel exopolysaccharide produced by <em>Lactobacillus coryniformis</em> NA-3 exhibits antioxidant and biofilm-inhibiting properties <em>in vitro</em&gt;. Food & Nutrition Research, 64. https://doi.org/10.29219/fnr.v64.3744
Original Articles