Bile salt hydrolase-overexpressing Lactobacillus strains can improve hepatic lipid accumulation in vitro in an NAFLD cell model

  • Wenli Huang Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
  • Guangqiang Wang Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
  • Yongjun Xia Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
  • Zhiqiang Xiong Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
  • Lianzhong Ai Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
Keywords: Lactobacillus; bile salt hydrolase; non-alcoholic fatty liver disease; hepatic lipid accumulation

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) includes a range of liver diseases that occur in the absence of significant alcohol consumption. The probiotic bacterial strains Lactobacillus casei LC2W, which overexpresses the bile salt hydrolase (BSH) gene (referred to as pWQH01), and Lactobacillus plantarum AR113, which exhibits high BSH activity, have been shown to improve hepatic lipid accumulation and may lower cholesterol levels in vivo. These effects may be BSH-dependent, as L. casei LC2W without BSH activity did not exert these beneficial effects.

Objective: This study aimed to investigate the effects of Lactobacillus with high BSH activity on cholesterol accumulation and lipid metabolism abnormalities in oleic acid (OA)- and cholesterol-induced HepG2 cell models, and to determine the mechanism underlying the effects.

Design: A HepG2 cell model of OA-induced steatosis and cholesterol-induced cholesterol accumulation was developed. OA- and cholesterol-treated HepG2 cells were incubated with L. plantarum AR113, L. casei LC2W or L. casei pWQH01 for 6 h at 37°C with 5% CO2. Subsequently, a series of indicators and gene expressions were analysed.

Results: Both L. plantarum AR113 and L. casei pWQH01 significantly reduced lipid accumulation, total cholesterol (TC) levels and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) mRNA expression relative to the control group, whereas L. casei LC2W had no similar effect. Additionally, exposure to L. plantarum AR113 or L. casei pWQH01 significantly reduced the expression of sterol regulatory element-binding protein 1c (SREBP-1c), Acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and tumour necrosis factor-α (TNF-α) andsignificantly increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor alpha (PPARα).

Conclusion: Both L. plantarum AR113 and L. casei pWQH01 appear to improve steatosis in vitro in a BSH-dependent manner.

Downloads

Download data is not yet available.

References


  1. Satapathy SK, Sanyal AJ. Epidemiology and natural history of nonalcoholic fatty liver disease. Semin Liver Dis 2015; 35(3): 221–35. doi: 10.1055/s-0035-1562943

  2. Dinani A, Sanyal A. Nonalcoholic fatty liver disease: implications for cardiovascular risk. Cardiovasc Endocrinol 2017; 6(2): 62–72. doi: 10.1097/XCE.0000000000000126

  3. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol 2010; 5: 145–71. doi: 10.1146/annurev-pathol-121808-102132

  4. Bellentani S, Scaglioni F, Marino M, Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig Dis 2010; 28(1): 155–61. doi: 10.1159/000282080

  5. Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta 2015; 1852(9): 1765–78. doi: 10.1016/j.bbadis.2015.05.015

  6. Min HK, Kapoor A, Fuchs M, Mirshahi F, Zhou H, Maher J, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab 2012; 15(5): 665–74. doi: 10.1016/j.cmet.2012.04.004

  7. Rotman Y, Sanyal AJ. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut 2017; 66(1): 180–90. doi: 10.1136/gutjnl-2016-312431

  8. Chandrasekaran VRM, Hsu DZ, Chien SP, Liu MY. Co-exposure of arsenic and iron causes hepatic injury: a tale of two hits. Epidemiology 2009; 20(6): S125. doi: 10.1097/01.ede.0000362432.97462.c5

  9. Li WP, Chen XG, Lin MZ, Huang DY. Up-regulated HOTAIR induced by fatty acids inhibits PTEN expression and increases triglycerides accumulation in HepG2 cells. Food Nutr Res 2017; 61: 1412794. doi: 10.1080/16546628.2017.1412794

  10. Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M, Pettinelli P, et al. Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin Sci (Lond) 2004; 106(6): 635–43. doi: 10.1042/CS20030326

  11. Janorkar AV, King KR, Megeed Z, Yarmush ML. Development of an in vitro cell culture model of hepatic steatosis using hepatocyte-derived reporter cells. Biotechnol Bioeng 2009; 102(5): 1466–74. doi: 10.1002/bit.22191

  12. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11(8): 506–14. doi: 10.1038/nrgastro.2014.66

  13. Korpela K, Salonen A, Vepsäläinen O, Suomalainen M, Kolmeder C, Varjosalo M, et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome 2018; 6(1): 182. doi: 10.1186/s40168-018-0567-4

  14. Hidalgo-Cantabrana C, Delgado S, Ruiz L, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and their health-promoting effects. Microbiol Spectr 2017; 5(3). doi: 10.1128/microbiolspec.BAD-0010-2016

  15. Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, et al. Randomised clinical trial: the beneficial effects of vsl#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2014; 39(11): 1276–85. doi: 10.1111/apt.12758

  16. Mouzaki M, Bandsma R. Targeting the gut microbiota for the treatment of non-alcoholic fatty liver disease. Curr Drug Targets 2015; 16(12): 1324–31. doi: 10.2174/1389450116666150416120351

  17. Foley MH, O’Flaherty S, Barrangou R, Theriot CM. Bile salt hydrolases: gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathog 2019; 15(3): e1007581. doi: 10.1371/journal.ppat.1007581

  18. Wang G, Zhang Y, Song X, Xia Y, Lai PF, Ai L. Lactobacillus casei LC2W can inhibit the colonization of Escherichia coli O157:H7 in vivo and reduce the severity of colitis. Food Funct 2019, 10: 5843-5852. doi: 10.1039/C9FO01390C.

  19. Cousin SP, Hügl SR, Wrede CE, Kajio H, Myers MG Jr, Rhodes CJ. Free fatty acid-induced inhibition of glucose and insulin-like growth factor I-induced deoxyribonucleic acid synthesis in the pancreatic beta-cell line INS-1. Endocrinology 2001; 142(1): 229–40. doi: 10.1210/endo.142.1.7863

  20. Li X, Wang R, Zhou N, Wang X, Liu Q, Bai Y, et al. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model. Biomed Rep 2013; 1(1): 71–76. doi: 10.3892/br.2012.27

  21. Horáčková Š, Plocková M, Demnerová K. Importance of microbial defence systems to bile salts and mechanisms of serum cholesterol reduction. Biotechnol Adv 2018; 36(3): 682–690. doi: 10.1016/j.biotechadv.2017.12.005

  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4): 402–8. doi: 10.1006/meth.2001.1262

  23. Hwang YJ, Lee EJ, Kim HR, Hwang KA. Nf-κb-targeted anti-inflammatory activity of Prunella vulgaris var. lilacina in macrophages raw 264.7. Int J Mol Sci 2013; 14(11): 21489–503. doi: 10.3390/ijms141121489

  24. Hostanska K, Suter A, Melzer J, Saller R. Evaluation of cell death caused by an ethanolic extract of Serenoae repentis fructus (prostasan) on human carcinoma cell lines. Anticancer Res 2007; 27(2): 873–81. doi: 0250-7005/2007 $2.00+.40

  25. de Boer JF, Schonewille M, Boesjes M, Wolters H, Bloks VW, Bos T, et al. Intestinal farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology 2017; 152(5): 1126–38. doi: 10.1053/j.gastro.2016.12.037

  26. Temel R. Hepatic or intestinal ABCG5 and ABCG8 are sufficient to block the development of sitosterolemia. J Lipid Res 2015; 56(2): 201–2. doi: 10.1194/jlr.C056945

  27. Paschos P, Paletas K. Non-alcoholic fatty liver disease and metabolic syndrome. Hippokratia 2009; 13(1): 9–19. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633261/

  28. Mavrogiannaki AN, Migdalis IN. Nonalcoholic fatty liver disease, diabetes mellitus and cardiovascular disease: newer data. Int J Endocrinol 2013; 2013: 450639. doi: 10.1155/2013/450639

  29. Pferschy-Wenzig EM, Atanasov AG, Malainer C, Noha SM, Kunert O, Schuster D, et al. Identification of isosilybin a from milk thistle seeds as an agonist of peroxisome proliferator-activated receptor gamma. J Nat Prod 2014; 77(4): 842–7. doi: 10.1021/np400943b

  30. Wang G, Zhang Y, Song X, Xia Y, Lai PF, Ai L. Lactobacillus casei LC2W can inhibit the colonization of Escherichia coli O157:H7 in vivo and reduce the severity of colitis. Food Funct 2019; 10: 5843–52. doi: 10.1039/C9FO01390C

  31. Han KJ, Lee NK, Park H, Paik HD. Anticancer and anti-inflammatory activity of probiotic Lactococcus lactis NK34. J Microbiol Biotechnol 2015; 25(10): 1697–701. doi: 10.4014/jmb.1503.03033

  32. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 2010; 64(6): 636–43. doi: 10.1038/ejcn.2010.19

  33. Malaguarnera M, Vacante M, Antic T, Giordano M, Chisari G, Acquaviva R, et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non-alcoholic steatohepatitis. Dig Dis Sci 2012; 57(2): 545–53. doi: 10.1007/s10620-011-1887-4

  34. Guo CF, Zhang S, Yuan YH, Li JY, Yue TL. Bile salt hydrolase and s-layer protein are the key factors affecting the hypocholesterolemic activity of Lactobacillus casei-fermented milk in Hamsters. Mol Nutr Food Res 2018; 62(24): e1800728. doi: 10.1002/mnfr.201800728

  35. Le B, Yang SH. Identification of a novel potential probiotic Lactobacillus plantarum FB003 isolated from salted-fermented shrimp and its effect on cholesterol absorption by regulation of NPC1L1 and PPARα. Probiotics Antimicrob Proteins. 2019; 11(3): 785–93. doi: 10.1007/s12602-018-9469-9

  36. Long YC, Zierath JR. Amp-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116(7): 1776–83. doi: 10.1172/JCI29044

  37. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13(4): 376–88. doi: 10.1016/j.cmet.2011.03.009

  38. Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A 1998; 95(11): 5987–92. doi: 10.1073/pnas.95.11.5987

  39. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999; 20(5): 649–88. doi: 10.1210/edrv.20.5.0380

  40. Svegliati-Baroni G, Candelaresi C, Saccomanno S, Ferretti G, Bachetti T, Marzioni M, et al. A model of insulin resistance and nonalcoholic steatohepatitis in rats: role of peroxisome proliferator-activated receptor-α and n-3 polyunsaturated fatty acid treatment on liver injury. Am J Pathol 2006; 169(3): 846–60. doi: 10.2353/ajpath.2006.050953

  41. Crespo J, Cayón A, Fernández-Gil P, Hernández-Guerra M, Mayorga M, Domínguez-Díez A, et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 2001; 34(6): 1158–63. doi: 10.1053/jhep.2001.29628

  42. Wong VW, Hui AY, Tsang SW, Chan JL, Tse AM, Chan KF, et al. Metabolic and adipokine profile of Chinese patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 2006; 4(9): 1154–61. doi: 10.1016/j.cgh.2006.06.011

  43. Cui W, Chen SL, Hu KQ. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res. 2010; 2(1): 95–104: PMCID: PMC2826826. Available from: www.ajtr.org/AJTR910003

Published
2020-11-12
How to Cite
Huang, W., Wang, G., Xia, Y., Xiong, Z., & Ai , L. (2020). Bile salt hydrolase-overexpressing <em>Lactobacillus </em>strains can improve hepatic lipid accumulation <em>in vitro</em&gt; in an NAFLD cell model. Food & Nutrition Research, 64. https://doi.org/10.29219/fnr.v64.3751
Section
Original Articles