Effects of fermented red bean extract on nephropathy in streptozocin-induced diabetic rats

  • Kung-Chi Chan Department of Food and Nutrition, Providence University, Taichung
  • Kar-Eng Kok Department of Food and Nutrition, Providence University, Taichung
  • Keh-Feng Huang Department of Applied Chemistry, Providence University, Taichung
  • Yao-Lin Weng Department of Food and Nutrition, Providence University, Taichung
  • Yun-Chin Chung Department of Food and Nutrition, Providence University, Taichun
Keywords: advanced-glycation end-products, C-reactive protein, 24-hour creatinine clearance, diabetic rats, natto-red bean extract


Background: The antioxidant effects of Bacillus subtilis-fermented red bean (natto-red bean) extract (NRBE) in young (6 weeks old) Sprague–Dawley rats and aged (12 months old) mice had been reported previously.

Objective: To evaluate the antioxidant and anti-inflammatory effects of NRBE in the kidneys of streptozocin- induced diabetic rats.

Design: Normal control rats and diabetic rats were orally gavaged with saline and low-dose NRBE (100 mg/ kg body weight [BW]), medium-dose NRBE (200 mg/kg BW), and high-dose NRBE (500 mg/kg BW), for 12 weeks and then sacrificed. Concentration of fasting glucose, adiponectin, renal function markers, antioxidative markers, and pro-inflammatory markers were measured.

Results: Oral administration of 50% ethanolic extract of NRBE with a dosage of 100 mg/kg BW, 200 mg/kg BW, or 500 mg/kg BW could improve the symptoms of kidney enlargement and renal function. Supplementation of NRBE can effectively inhibit the formation of renal reactive oxygen species and advanced-glycation end-products and increase renal glutathione content and serum adiponectin. A low dose of NRBE (100 mg/ kg BW) decreased fasting blood sugar and renal interleukin (IL)-6 expression. Serum C-reactive protein, renal tumor necrosis factor-α, and monocyte chemoattractant protein-1 concentrations were decreased, and renal superoxide dismutase activity was increased in the medium-dose NRBE group. Twenty-four hour creatinine clearance and urinary albumin excretion also improved by medium-dose NRBE supplementation. In NRBE, total phenols and flavonoids were 6.3 mg gallic acid equivalent/g and 12.02 mg rutin equivalent/g, respectively, and kampherol was the major active antioxidant compound.

Conclusion: This study demonstrated that appropriate amount of NRBE, 200 mg/kg BW in rats, could prevent diabetic nephropathy by improving antioxidant status and inhibiting inflammation in renal tissue.


Download data is not yet available.


  1. International Diabetes Federation. Atlas of diabetes. 17th ed. 2017. [cited 23 November 2020] Available from: http://www.diabetesatlas.org.

  2. Ministry of Health and Welfare, R.O.C. 2018. [cited 23 November 2020] Available from: https://www.mohw.gov.tw/cp-4256-48057-1.html

  3. Radica ZA, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 2017; 12: 2032–45. doi: 10.2215/CJN.11491116

  4. Dabhi B, Mistry KN. Oxidative stress and its association with TNF-α-308 G/C and IL-1α-889 C/T gene polymorphisms in patients with diabetes and diabetic nephropathy. Gene 2015; 562: 197–202. doi: 10.1016/j.gene.2015.02.069

  5. Tan AL, Forbes JM, Cooper ME. Age, rage, and ROS in diabetic nephropathy. Semin Nephrol 2007; 27(2): 130–43. doi: 10.1016/j.semnephrol.2007.01.006

  6. Sifuentes-Franco S, Padilla-Tejeda DE, Carrillos-Ibarra S, Miranda-díaz AG. Oxidative stress, apoptosis, and mitochondrial function in diabetic nephropathy. Int J Endocrinol 2018; 2: 1–13. doi: 10.1155/2018/1875870

  7. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008; 57: 1446–54. doi: 10.2337/db08-0057

  8. Drimal J, Knezl V, Navarova J, Nedelcevova J, Nedelcevova J, Paulovicova E, et al. Role of inflammatory cytokines and chemoattractants in rat model of streptozotocin-induced diabetic heart failure. Endocr Regul 2008; 42: 129–35.

  9. Endo A, Irisawa T, Dicks L, Tanasupawat S. Fermentations of East and Southeast Asia. In: Gandjar I, eds. Encyclopedia of food microbiology. Vol. 2. 2nd ed. UK: Elsevier Ltd, Amsterdam, Netherland; 1999, pp. 767–73.

  10. Lim TK. Vigna angularis. In: Lim TK, eds. Edible medicinal and non-medicinal plants. Dordrecht: Springer; 2012. pp. 937–45. doi: 10.1007/978-94-007-1764-0_98

  11. Kamiya S, Hagimori M, Ogasawara M, Arakawa M. In vivo evaluation method of the effect of nattokinase on carrageenan-induced tail thrombosis in a rat model. Acta Haematol 2010; 124: 218–24. doi: 10.1159/00032151

  12. Chang CT, Wang PM, Hung YF, Chung YC. Purification and biochemical properties of fibrinolytic enzyme from Bacillus subtilis-fermented red bean. Food Chem 2012; 133: 1611–17. doi: 10.1016/j.foodchem.2012.02.061

  13. Chung YC, Chang CT, Chao WW, Lin CF, Chou ST. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agric Food Chem 2002; 50: 2454–8. doi: 10.1021/jf011369q

  14. Chou ST, Chao WW, Chung YC. Effect of fermentation on the antioxidant activity of red beans (Phaseolus radiatus L. var. Aurea) ethanolic extract. Int J Food Sci Technol 2008; 43: 1371–8. doi: 10.1111/j.1365-2621.2007.01626.x

  15. Chou ST, Chung YC, Peng HY, Hsu CK. Improving antioxidant status in aged mice by 50% ethanol extract from red bean fermented by Bacillus subtilis. J Sci Food Arg 2013; 93: 2562–7. doi: 10.1002/jsfa.6077

  16. Jhan JK, Chang WF, Wang PM, Chou ST, Chung YC. Production of fermented red beans with multiple bioactivities using co-cultures of Bacillus subtilis and Lactobacillus delbrueckii subsp. Bulgaricus. LWT-Food Sci Technol 2015; 63: 1281–7. doi: 10.1016/j.lwt.2015.03.107

  17. Garber J, Barbee R, Bielitzki J, Clayton L, Donovan J, Hendriksen DF, et al. Guide for the care and use of laboratory animals. National Academy of Sciences (Vol. 8). Washington, DC: National Academies Press; 2011. doi: 10.2307/1525495

  18. Zhang SW, Xu HL, Yu XF, Wang YC, Sun FF, Sui DY. Simvastatin ameliorates low-dose streptozotocin-induced type 2 diabetic nephropathy in an experimental rat model. Int J Clin Exp Med 2015; 8: 6388–96.

  19. Sun H, Ge N, Shao M, Cheng X, Li Y, Li S, et al. Lumbrokinase attenuates diabetic nephropathy through regulating extracellular matrix degradation in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 2013; 100: 85–95. doi: 10.1016/j.diabres.2013.01.012

  20. Pan D, Zhang D, Wu JS, Chen CH, Xua ZX, Yang HJ, et al. Novel proteoglycan from Ganoderma lucidum fruiting bodies protects kidney function and ameliorates diabetic nephropathy via its antioxidant activity in C57BL/6 db/db mice. Food Chem Toxicol. 2014; 63: 111–18. doi: 10.1016/j.fct.2013.10.046

  21. Sharma V, Sharma PL. Role of different molecular pathways in the development of diabetes-induced nephropathy. J Diabetes Metab 2013; S9: 1–7. doi: 10.4172/2155-6156.S9-004

  22. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 2012; 8: 293–300. doi: 10.1038/nrneph.2012.19

  23. Griffin KA, Kramer H, Bidani AK. Adverse renal consequences of obesity. Am J Physiol Renal Physiol 2008; 294: 685–96. doi: 10.1152/ajprenal.00324.2007

  24. Putt DA, Zhong Q, Lash LH. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy. Toxicol Appl Pharmacol 2012; 258: 188–98. doi: 10.1016/j.taap.2011.10.021

  25. Tojo A, Kinugasa S. Mechanisms of glomerular albumin filtration and tubular reabsorption. Int J Nephrol 2012; 48: 1520–9. doi: 10.1155/2012/481520

  26. Weiner ID, Mitch WE, Sands JM. Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol 2015; 10: 1444–58. doi: 10.2215/CJN.10311013

  27. Dierckx N, Horvath G, van Gils C, Vertommen J, van de Vliet J, De Leeuw I, et al. Oxidative stress in patients with diabetes mellitus: relationship to diet. Eur J Nutr 2003; 57: 999–1008. doi: 10.1038/sj.ejcn.1601635

  28. Wendel A. Glutathione peroxidase. In: Jakoby WB, eds. Enzymatic basis of detoxication. Cambridge, Massachusetts: Academic Press; 1980. pp. 333–53.

  29. Yoshida SI, Hashimoto T, Kihara M, Imai N, Yasuzaki H, Nomura K, et al. Urinary oxidative stress markers closely reflect the efficacy of Candesartan treatment for diabetic nephropathy. Nephron Exp Nephrol 2008; 111: 20–30. doi: 10.1159/000178764

  30. Yilmaz M, Rencuzogullari E, Canli M. The effects of cyfluthrin on some biomarkers in the liver and kidney of Wistar rats. Environ Sci Pollut Res Int 2015; 22: 4747–52. doi: 10.1007/s11356-014-3734-6

  31. Nishikawa T, Edelstein D, Du XL, Yamagishi SI, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemia damage. Nature 2000; 404: 787–90. doi: 10.1038/35008121.

  32. Arora MK, Singh UK. Oxidative stress: meeting multiple targets in pathogenesis of diabetic nephropathy. Curr Drug Targets 2014; 15: 531–8. doi: 10.2174/1389450115666140321120635

  33. Varatharajan R, Sattar MZA, Chung I, Abdulla MA, Kassim NM. Abdullah NA. Antioxidant and pro-oxidant effects of oil palm (Elaeis guineensis) leaves extract in experimental diabetic nephropathy: a duration-dependent outcome. BMC Complement Altern Med 2013; 13: 242–54. doi: 10.1186/1472-6882-13-242

  34. Atoui AK, Mansouri A, Boskou G, Kefalas P. Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chem 2005; 89: 27–36. doi: 10.1016/j.foodchem.2004.01.075

  35. Navarro-González JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 2011; 7: 327–40. doi: 10.1038/nrneph.2011.51

  36. Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008; 19: 433–42. doi: 10.1681/ASN.2007091048

  37. Wojciak-Stothard B, Entwistle A, Garg R, Ridley AJ. Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 1998; 176: 150–65. doi: 10.1002/(SICI)1097-4652(199807)176:1%3C150::AID-JCP17%3E3.0.CO;2-B

  38. MaCarthy E, Sharma R, Sharma M, Li JZ, Ge XL, Dileepan KN, et al. TNF-alpha increases albumin permeability of isolated rat glomeruli through the generation of superoxide. J Am Soc Nephrol 1998; 9: 433–8.

  39. Rashid G, Luzon AA, Korzets Z, Klein O, Zeltzer E, Bernheim J. The effects of advanced glycation end-products and aminoguanidine on TNF-α production by rat peritoneal macrophages. Perit Dial Int 2001; 21(2): 122–9. doi: 10.1177/089686080102100203

  40. Chow FY, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. Nephrol Dial Transpl 2004; 19: 2987–96. doi: 10.1093/ndt/gfh441

  41. Sassy-Prigent C, Heudes D, Mandet C, Bélair MF, Michel O, Perdereau B, et al. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 2000; 49: 466–75. doi: 10.2337/diabetes.49.3.466

  42. Lim AKH, Tesch GH. Inflammation in diabetic nephropathy. Mediat Inflamm 2012; 146154: 1–12. doi: 10.1155/2012/146154

  43. Sozzani S, Locati M, Allavena P, Van Damme J, Mantovani A. Chemokines: a superfamily of chemotactic cytokines. Int J Clin Lab Res 1996; 26: 69–82. doi: 10.1007/BF02592349

  44. Wu J, Guan TJ, Zheng S, Grosjean F, Liu W, Xiong H, et al. Inhibition of inflammation by pentosan polysulfate impedes the development and progression of severe diabetic nephropathy in aging C57B6 mice. Lab Invest. 2011; 91: 1459–71. doi: 10.1038/labinvest.2011.93

  45. Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem 2004; 279: 48487–90. doi: 10.1074/jbc.R400025200

  46. Marcovecchio ML, Giannini C, Widmer B, Dalton RN, Martinotti S, Chiarelli F, et al. C-reactive protein in relation to the development of microalbuminuria in type 1 diabetes. The Oxford Regional Prospective Study. Diabetes Care 2008; 31: 974–6. doi: 10.2337/dc07-2101

  47. Mojahedi MJ, Bonakdaran S, Hami M, Sheikhian MR, Shakeri MT, Aiatollahi H. Elevated serum C-reactive protein level and microalbuminuria in patients with type 2 diabetes mellitus. Iran J Kidney Dis 2009; 3: 12–16.

  48. Wang W, VanAlstyne PC, Irons KA, Chen S, Stewart J, Birt DF. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines. Nutr Cancer 2004; 48: 106–14. doi: 10.1207/s15327914nc4801_14

  49. Motar AA, AL-Hadad AA. Qualitative and quantitative study of active compounds of Casuarina cunninghamiana L. parts. J Pharm Sci Res 2018; 10: 693–6.

How to Cite
Chan K.-C., Kok K.-E., Huang K.-F., Weng Y.-L., & Chung Y.-C. (2020). Effects of fermented red bean extract on nephropathy in streptozocin-induced diabetic rats. Food & Nutrition Research, 64. https://doi.org/10.29219/fnr.v64.4272
Original Articles