Effects of paprika carotenoid supplementation on bone turnover in postmenopausal women: a randomized, double-blind, placebocontrolled, parallel-group comparison study

  • Naofumi Umigai Riken Vitamin Co. Ltd.,
  • Yusuke Kozai Department of Dentomaxillofacial Diagnosis and Treatment, Kanagawa Dental University, Kanagawa, Japan
  • Tadahiro Saito Riken Vitamin Co., Ltd., Tokyo, Japan
  • Tsuyoshi Takara Medical Corporation Seishinkai, Takara Clinic, Tokyo, Japan
Keywords: Osteoporosis, Bone resorption, Clinical trial, Postmenopause, Capsicum, Capsanthin, β-carotene, β-cryptoxanthin, Zeaxanthin


Background: Paprika (Capsicum annuum L.) is a good source of carotenoids, including capsanthin, β-carotene, β-cryptoxanthin, and zeaxanthin. Several epidemiological studies have shown a beneficial association of intake of these carotenoids or their blood concentration with bone mineral density (BMD) and fracture risk. However, little information is available regarding the effect of intake of these carotenoids on bone metabolism in postmenopausal women.

Objective: The objective of the present study was to investigate the effects of paprika carotenoid extract (PCE) on bone turnover in healthy, postmenopausal women.

Design: We conducted a randomized, double-blind, placebo-controlled, parallel-group comparison study. One hundred participants were randomly assigned to PCE or placebo groups. Each group was given a 20 mg PCE (equivalent to 1.4 mg of carotenoids) a day or a placebo for 24 weeks. We measured bone resorption markers (tartrate-resistant acid phosphatase 5b [TRACP-5b] and serum type I collagen cross-linked N-telopeptide [sNTX]) at 12 and 24 weeks and bone formation markers (bone alkaline phosphatase and osteocalcin) at 24 weeks.

Results: The percentage decrease of TRACP-5b at 24 weeks was significantly higher for PCE than the placebo. There were no significant differences in sNTX or bone formation markers, although PCE decreased each marker compared with the placebo.

Conclusion: Our findings suggest that PCE supplementation suppresses bone resorption and contributes to maintaining bone quality in postmenopausal women.


Download data is not yet available.


  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285(6): 785–95. doi: 10.1001/jama.285.6.785

  2. Karlamangla AS, Burnett-Bowie SM, Crandall CJ. Bone health during the menopause transition and beyond. Obstet Gynecol Clin North Am 2018; 45(4): 695–708. doi: 10.1016/j.ogc.2018.07.012

  3. Yoshimura N, Muraki S, Oka H, Mabuchi A, En-Yo Y, Yoshida M, et al. Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: the research on osteoarthritis/osteoporosis against disability study. J Bone Miner Metab 2009; 27: 620–8. doi: 10.1007/s00774-009-0080-8

  4. Orimo H, Nakamura T, Hosoi T, Iki M, Uenishi K, Endo N, et al. Japanese 2011 guidelines for prevention and treatment of osteoporosis – executive summary. Arch Osteoporos 2012; 7: 3–20. doi: 10.1007/s11657-012-0109-9

  5. Fujiwara S, Zhao X, Teoh C, Jaffe DH, Taguchi Y. Disease burden of fractures among patients with osteoporosis in Japan: health-related quality of life, work productivity and activity impairment, healthcare resource utilization, and economic costs. J Bone Miner Metab 2019; 37: 307–18. doi: 10.1007/s00774-018-0916-1

  6. Watts NB, Geusens P, Barton IP, Felsenberg D. Relationship between changes in BMD and nonvertebral fracture incidence associated with risedronate: reduction in risk of nonvertebral fracture is not related to change in BMD. J Bone Miner Res 2005; 20(12): 2097–104. doi: 10.1359/JBMR.050814

  7. Zaidi M, Turner CH, Canalis E, Pacifici R, Sun L, Iqbal J, et al. Bone loss or lost bone: rationale and recommendations for the diagnosis and treatment of early postmenopausal bone loss. Curr Osteoporos Rep 2009; 7: 118–26. doi: 10.1007/s11914-009-0021-4

  8. Eastell R, O’Neill TW, Hofbauer LC, Langdahl B, Reid IR, Gold DT, et al. Postmenopausal osteoporosis. Nat Rev Dis Primers 2016; 2: 16069. doi: 10.1038/nrdp.2016.69

  9. Ott SM. Cortical or trabecular bone: what’s the difference? Am J Nephrol 2018; 47: 373–5. doi: 10.1159/000489672

  10. Matkovic V, Fontana D, Tominac C, Goel P, Chesnut CH, 3rd. Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr 1990; 52(5): 878–88. doi: 10.1093/ajcn/52.5.878

  11. Christodoulou S, Goula T, Ververidis A, Drosos G. Vitamin D and bone disease. Biomed Res Int 2013; 2013: 396541. doi: 10.1155/2013/396541

  12. Prentice A. Diet, nutrition and the prevention of osteoporosis. Public Health Nutr 2004; 7(1a): 227–43. doi: 10.1079/PHN2003590

  13. Eggersdorfer M, Wyss A. Carotenoids in human nutrition and health. Arch Biochem Biophys 2018; 652: 18–26. doi: 10.1016/j.abb.2018.06.001

  14. Sahni S, Hannan MT, Blumberg J, Cupples LA, Kiel DP, Tucker KL. Protective effect of total carotenoid and lycopene intake on the risk of hip fracture: a 17-year follow-up from the Framingham Osteoporosis Study. J Bone Miner Res 2009; 24(6): 1086–94. doi: 10.1359/jbmr.090102

  15. Dai Z, Wang R, Ang LW, Low YL, Yuan JM, Koh WP. Protective effects of dietary carotenoids on risk of hip fracture in men: the Singapore Chinese Health Study. J Bone Miner Res 2014; 29(2): 408–17. doi: 10.1002/jbmr.2041

  16. Cao WT, Zeng FF, Li BL, Lin JS, Liang YY, Chen YM. Higher dietary carotenoid intake associated with lower risk of hip fracture in middle-aged and elderly Chinese: a matched case-control study. Bone 2018; 111: 116–22. doi: 10.1016/j.bone.2018.03.023

  17. Sugiura M, Nakamura M, Ogawa K, Ikoma Y, Yano M. High serum carotenoids associated with lower risk for bone loss and osteoporosis in post-menopausal Japanese female subjects: prospective cohort study. PLoS One 2012; 7: e52643. doi: 10.1371/journal.pone.0052643

  18. Regu GM, Kim H, Kim YJ, Paek JE, Lee G, Chang N, et al. Association between dietary carotenoid intake and bone mineral density in Korean adults aged 30–75 years using data from the Fourth and Fifth Korean National Health and Nutrition Examination Surveys (2008–2011). Nutrients 2017; 9(9): 1025. doi: 10.3390/nu9091025

  19. Ozaki K, Okamoto M, Fukasawa K, Iezaki T, Onishi Y, Yoneda Y, et al. Daily intake of β-cryptoxanthin prevents bone loss by preferential disturbance of osteoclastic activation in ovariectomized mice. J Pharmacol Sci 2015; 129(1): 72–7. doi: 10.1016/j.jphs.2015.08.003

  20. Hirata N, Ichimaru R, Tominari T, Matsumoto C, Watanabe K, Taniguchi K, et al. Beta-cryptoxanthin inhibits lipopolysaccharide-induced osteoclast differentiation and bone resorption via the suppression of inhibitor of NF-κB kinase activity. Nutrients 2019; 11(2): 368. doi: 10.3390/nu11020368

  21. Wang F, Wang N, Gao Y, Zhou Z, Liu W, Pan C, et al. β-Carotene suppresses osteoclastogenesis and bone resorption b-y suppressing NF-κB signaling pathway. Life Sci 2017; 174: 15–20. doi: 10.1016/j.lfs.2017.03.002

  22. Rao LG, Krishnadev N, Banasikowska K, Rao AV. Lycopene I-effect on osteoclasts: lycopene inhibits basal and parathyroid hormone-stimulated osteoclast formation and mineral resorption mediated by reactive oxygen species in rat bone marrow cultures. J Med Food 2003; 6(2): 69–78. doi: 10.1089/109662003322233459

  23. Iino M, Kozai Y, Kawamata R, Wakao H, Sakurai T, Kashima I. Effects of β-cryptoxanthin on bone-formation parameters in the distal femoral epiphysis of ovariectomized mice. Oral Radiol 2014; 30: 1–8. doi: 10.1007/s11282-013-0131-7

  24. Rodriguez-Uribe L, Guzman I, Rajapakse W, Richins RD, O’Connell MA. Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels. J Exp Bot 2012; 63(1): 517–26. doi: 10.1093/jxb/err302

  25. Nishino A, Yasui H, Maoka T. Reaction of paprika carotenoids, capsanthin and capsorubin, with reactive oxygen species. J Agric Food Chem 2016; 64(23): 4786–92. doi: 10.1021/acs.jafc.6b01706

  26. Hernández-Ortega M, Ortiz-Moreno A, Hernández-Navarro MD, Chamorro-Cevallos G, Dorantes-Alvarez L, Necoechea-Mondragón H. Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.). J Biomed Biotechnol 2012; 2012: 524019. doi: 10.1155/2012/524019

  27. Kakutani R, Hokari S, Nishino A, Ichihara T, Sugimoto K, Takaha T, et al. Effect of oral paprika xanthophyll intake on abdominal fat in healthy overweight humans: a randomized, double-blind, placebo-controlled study. J Oleo Sci 2018; 67(9): 1149–62. doi: 10.5650/jos.ess18076

  28. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39: 175–91. doi: 10.3758/BF03193146

  29. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci 2006; 1092(1): 385–96. doi: 10.1196/annals.1365.035

  30. Nishizawa Y, Miura M, Ichimura S, Inaba M, Imanishi Y, Shiraki M, et al. Executive summary of the Japan Osteoporosis Society Guide for the Use of Bone Turnover Markers in the Diagnosis and Treatment of Osteoporosis (2018 Edition). Clin Chim Acta 2019; 498: 101–7. doi: 10.1016/j.cca.2019.08.012

  31. Iki M, Morita A, Ikeda Y, Sato Y, Akiba T, Matsumoto T, et al. Biochemical markers of bone turnover predict bone loss in perimenopausal women but not in postmenopausal women-the Japanese Population-based Osteoporosis (JPOS) Cohort Study. Osteoporos Int 2006; 17: 1086–95. doi: 10.1007/s00198-005-0052-3

  32. Yoshimura N, Muraki S, Oka H, Kawaguchi H, Nakamura K, Akune T. Biochemical markers of bone turnover as predictors of osteoporosis and osteoporotic fractures in men and women: 10-year follow-up of the Taiji cohort. Mod Rheumatol 2011; 21(6): 608–20. doi: 10.1007/s10165-011-0455-2

  33. Shieh A, Ishii S, Greendale GA, Cauley JA, Lo JC, Karlamangla AS. Urinary N-telopeptide and rate of bone loss over the menopause transition and early postmenopause. J Bone Miner Res 2016; 31(11): 2057–64. doi: 10.1002/jbmr.2889

  34. Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS prospective study. J Bone Miner Res 1996; 11(10): 1531–8. doi: 10.1002/jbmr.5650111021

  35. Ross PD, Kress BC, Parson RE, Wasnich RD, Armour KA, Mizrahi IA. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos Int 2000; 11: 76–82. doi: 10.1007/s001980050009

  36. Gerdhem P, Ivaska KK, Alatalo SL, Halleen JM, Hellman J, Isaksson A, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 2004; 19(3): 386–93. doi: 10.1359/JBMR.0301244

  37. Sowers MR, Zheng H, Greendale GA, Neer RM, Cauley JA, Ellis J, et al. Changes in bone resorption across the menopause transition: effects of reproductive hormones, body size, and ethnicity. J Clin Endocrinol Metab 2013; 98(7): 2854–63. doi: 10.1210/jc.2012-4113

  38. Lv Y, Wang G, Xu W, Tao P, Lv X, Wang Y. Tartrate-resistant acid phosphatase 5b is a marker of osteoclast number and volume in RAW 264.7 cells treated with receptor-activated nuclear κB ligand. Exp Ther Med 2015; 9(1): 143–6. doi: 10.3892/etm.2014.2071

  39. Tsuji O, Urakado M, Koyanagi E, Shinohara M, Hisae M, Naruo S, et al. Comparison between TRACP-5b and serum NTX after treatment with risedronate in osteoporosis. Orthop & Traumatol 2011; 60(3): 473–6 (in Japanese). doi: 10.5035/nishiseisai.60.473

  40. Vasikaran S, Eastell R, Bruyère O, Foldes AJ, Garnero P, Griesmacher A, et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 2011; 22: 391–420. doi: 10.1007/s00198-010-1501-1

How to Cite
Umigai, N., Kozai, Y., Saito, T., & Takara, T. (2020). Effects of paprika carotenoid supplementation on bone turnover in postmenopausal women: a randomized, double-blind, placebocontrolled, parallel-group comparison study. Food & Nutrition Research, 64. https://doi.org/10.29219/fnr.v64.4565
Original Articles