Effect of fucoidan on ethanol-induced liver injury and steatosis in mice and the underlying mechanism

  • Meilan Xue Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
  • Hui Liang The Institute of Human Nutrition, College of Public Health, Qingdao University of Medicine, 308# Ningxia Road, Qingdao, 266071, PR China
  • Zhitong Zhou Food Science Department, University of Guelph, Guelph, Ontario, Canada
  • Ying Liu Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
  • Xinjia He Oncology Department, The Affiliated Hospital of Qingdao University, Qingdao, PR China
  • Zheng Zhang Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
  • Ting Sun Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
  • Jia Yang Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
  • Yimin Qin State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co., Ltd., Qingdao, China
  • Kunpeng Qin Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University of Medicine, Qingdao, PR China
Keywords: fucoidan; ethanol-induced liver injury; AMPKα1/SIRT1 pathway; gut microbiota-bile acid-liver axis


Background: Alcoholic liver disease is caused as a result of chronic alcohol consumption. In this study, we used an alcoholic liver injury mouse model to investigate the effect of fucoidan on ethanol-induced liver injury and steatosis and the underlying mechanisms.

Methods: All mice were randomly divided into four groups: 1) control group, 2) model group, 3) diammonium glycyrrhizinate treatment group (200 mg/kg body weight), and 4) fucoidan treatment group (300 mg/kg body weight). Administration of ethanol for 8 weeks induced liver injury and steatosis in mice.

Results: Fucoidan treatment decreased serum alanine aminotransferase activity, serum total cholesterol levels, and hepatic triglyceride levels, and improved the morphology of hepatic cells. Fucoidan treatment upregulated the expression of AMPKα1, SIRT1, and PGC-1α and inhibited the expression of ChREBP and HNF-1α. The levels of hepatic IL-6 and IL-18 were significantly decreased in the fucoidan group. Further, the levels of cytochrome P450-2E1 (CYP2E1), glucose-regulated protein (GRP) 78, and 3-nitrotyrosine (3-NT) in hepatic tissues were reduced in the fucoidan group as compared to the model group. Fucoidan significantly reversed the reduction of ileac Farnesoid X receptor (FXR) and fibroblast growth factor 15 (FGF15) levels induced by alcohol- feeding and reduced CYP7A1 (cholesterol 7α-hydroxylase) expression and total bile acid levels in the liver tissue. In addition, fucoidan regulated the structure of gut flora, with increased abundance of Prevotella and decreased abundance of Paraprevotella and Romboutsia as detected by 16S rDNA high-throughput sequencing.

Conclusion: Fucoidan inhibited alcohol-induced steatosis and disorders of bile acid metabolism in mice through the AMPKα1/SIRT1 pathway and the gut microbiota–bile acid–liver axis and protected against alcohol- induced liver injury in vivo.


Download data is not yet available.


  1. World Health Organization. Global status report on alcohol and health 2014. Global Status Report Alcohol 2014; 18(7): 1–57.
  2. Teschke R. Alcoholic liver disease: alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines 2018; 6(4): pii: E106. doi: 10.3390/biomedicines6040106
  3. Rehm J, Samokhvalov AV, Shield KD. Global burden of alcoholic liver diseases. J Hepatol 2013; 59(1): 160–8. doi: 10.1016/j.jhep.2013.03.007
  4. Steiner JL, Lang CH. Alcohol, adipose tissue and lipid dysregulation. Biomolecules 2017; 7(1): pii: E16. doi: 10.3390/biom7010016
  5. Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 2015; 12(4): 231–42. doi: 10.1038/nrgastro.2015.35
  6. Bansal S, Liu CP, Sepuri NB, Anandatheerthavarada HK, Selvaraj V, Hoek J, et al. Mitochondria-targeted cytochrome P450 2E1 induces oxidative damage and augments alcohol-mediated oxidative stress. J Biol Chem 2010; 25(32): 24609–19. doi: 10.1074/jbc.M110.121822
  7. Song BJ, Akbar M, Jo I, Hardwick JP, Abdelmegeed MA. Translational implications of the alcohol-metabolizing enzymes, including cytochrome P450-2E1, in alcoholic and nonalcoholic liver disease. Adv Pharmacol 2015; 74: 303–72. doi: 10.1016/bs.apha.2015.04.002
  8. Cui Y, Jiang L, Shao Y, Mei L, Tao Y. Anti-alcohol liver disease effect of Gentianae macrophyllae extract through MAPK/JNK/p38 pathway. J Pharm Pharmacol 2019; 71(2): 240–50. doi: 10.1111/jphp.13027
  9. Ge L, Chen D, Chen W, Cai C, Tao Y, Ye S, et al. Pre-activation of TLR3 enhances the therapeutic effect of BMMSCs through regulation the intestinal HIF-2α signaling pathway and balance of NKB cells in experimental alcoholic liver injury. Int Immunopharmacol 2019; 70: 477–85. doi: 10.1016/j.intimp.2019.02.021
  10. Dopico AM, Lovinger DM. Acute alcohol action and desensitization of ligand-gated ion channels. Pharmacol Rev 2009; 61(1): 98–114. doi: 10.1124/pr.108.000430
  11. Amer SM, Bhopale KK, Kakumanu RD, Popov VL, Rampy BA, El-Mehallawi IH, et al. Hepatic alcohol dehydrogenase deficiency induces pancreatic injury in chronic ethanol feeding model of deer mice. Exp Mol Pathol 2018; 104(1): 89–97. doi: 10.1016/j.yexmp.2018.01.002
  12. Matyas C, Varga ZV, Mukhopadhyay P, Paloczi J, Lajtos T, Erdelyi K, et al. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis. Am J Physiol Heart Circ Physiol 2016; 310(11): H1658–70. doi: 10.1152/ajpheart.00214.2016
  13. Zheng Y, Liu T, Wang Z, Xu Y, Zhang Q, Luo D. Low molecular weight fucoidan attenuates liver injury via SIRT1/AMPK/PGC1α axis in db/db mice. Int J Biol Macromol 2018; 112: 929–36. doi: 10.1016/j.ijbiomac.2018.02.072
  14. Cumashi A, Ushakova NA, Preobrazhenskaya ME, D’Incecco A, Piccoli A, Totani L, et al. Consorzio Interuniversitario Nazionale per la Bio-Oncologia, Italy. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 2007; 17(5): 541–52. doi: 10.1093/glycob/cwm014
  15. Yokota T, Nomura K, Nagashima M, Kamimura N. Fucoidan alleviates high-fat diet-induced dyslipidemia and atherosclerosis in ApoE(shl) mice deficient in apolipoprotein E expression. J Nutr Biochem 2016; 32: 46–54. doi: 10.1016/j.jnutbio.2016.01.011
  16. Heeba GH, Morsy MA. Fucoidan ameliorates steatohepatitis and insulin resistance by suppressing oxidative stress and inflammatory cytokines in experimental non-alcoholic fatty liver disease. Environ Toxicol Pharmacol 2015; 40(3): 907–14. doi: 10.1016/j.etap.2015.10.003
  17. Meenakshi S, Umayaparvathi S, Saravanan R, Manivasagam T, Balasubramanian T. Hepatoprotective effect of fucoidan isolated from the seaweed Turbinaria decurrens in ethanol intoxicated rats. Int J Biol Macromol 2014; 67: 367–72. doi: 10.1016/j.ijbiomac.2014.03.042
  18. Kim HK, Song IS, Kim N, Sohn EH, Han J, Lim JD, et al. Fucoidan from Fucus vesiculosus protects against alcohol-induced liver damage by modulating inflammatory mediators in mice and HepG2 cells. Mar Drugs 2015; 13(2): 1051–67. doi: 10.3390/md13021051
  19. Xue M, Liang H, Ji X, Zhou Z, Liu Y, Sun T, et al. Effects of fucoidan on gut flora and tumor prevention in 1,2-dimethylhydrazine-induced colorectal carcinogenesis. J Nutr Biochem 2020; 82: 108396. doi: 10.1016/j.jnutbio.2020.108396
  20. Gao M, Li X, He L, Yang J, Ye X, Xiao F, et al. Diammonium glycyrrhizinate mitigates liver injury via inhibiting proliferation of NKT cells and promoting proliferation of Tregs. Drug Des Devel Ther 2019; 13: 3579–89. doi: 10.2147/DDDT.S220030
  21. Chen YM, Tsai YH, Tsai TY, Chiu YS, Wei L, Chen WC, et al. Fucoidan supplementation improves exercise performance and exhibits anti-fatigue action in mice. Nutrients 2014; 31; 7(1): 239–52. doi: 10.3390/nu7010239
  22. Abdel-Daim MM, Abdeen A, Jalouli M, Abdelkader A, Megahed A, Alkahtane A, et al. Fucoidan supplementation modulates hepato-renal oxidative stress and DNA damage induced by aflatoxin B1 intoxication in rats. Sci Total Environ 2020; 768: 144781. doi: 10.1016/j.scitotenv.2020.144781
  23. Xue M, Liang H, Ji X, Liu Y, Ge Y, Hou L, et al. Fucoidan prevent murine autoimmune diabetes via suppression TLR4-signaling pathways, regulation DC/Treg induced immune tolerance and improving gut microecology. Nutr Metab (Lond). 2019; 16: 87. doi: 10.1186/s12986-019-0392-1
  24. Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 2013; 58(5): 949–55. doi: 10.1016/j.jhep.2013.01.003
  25. Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, et al. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 2015; 125(1): 386–402. doi: 10.1172/JCI76738
  26. Wan D, Zhou Y, Wang K, Hou Y, Hou R, Ye X. Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats. Brain Res Bull 2016; 121: 255–62. doi: 10.1016/j.brainresbull.2016.02.011
  27. Zaha VG, Young LH. AMP-activated protein kinase regulation and biological actions in the heart. Circ Res 2012; 111(6): 800–14. doi: 10.1161/CIRCRESAHA.111.255505
  28. O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 2013; 493(7432): 346–55. doi: 10.1038/nature11862
  29. Matsushita T, Sasaki H, Takayama K, Ishida K, Matsumoto T, Kubo S, et al. The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1β in human chondrocytes. J Orthop Res 2013; 31(4): 531–7. doi: 10.1002/jor.22268
  30. Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins. Nature 2009; 460(7255): 587–91. doi: 10.1038/nature08197
  31. Zeng W, Shan W, Gao L, Gao D, Hu Y, Wang G, et al. Inhibition of HMGB1 release via salvianolic acid B-mediated SIRT1 up-regulation protects rats against non-alcoholic fatty liver disease. Sci Rep 2015; 5: 16013. doi: 10.1038/srep16013
  32. Lv H, Wang L, Shen J, Hao S, Ming A, Wang X, et al. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats. Brain Res Bull 2015; 115: 30–6. doi: 10.1016/j.brainresbull.2015.05.002
  33. Mogalli R, Matsukawa T, Shimomura O, Isoda H, Ohkohchi N. Cyanidin-3-glucoside enhances mitochondrial function and biogenesis in a human hepatocyte cell line. Cytotechnology 2018; 70(6): 1519–28. doi: 10.1007/s10616-018-0242-4
  34. Yin H, Hu M, Liang X, Ajmo JM, Li X, Bataller R, et al. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology 2014; 146(3): 801–11. doi: 10.1053/j.gastro.2013.11.008
  35. You M, Jogasuria A, Taylor C, Wu J. Sirtuin 1 signaling and alcoholic fatty liver disease. Hepatobiliary Surg Nutr 2015; 4(2): 88–100. doi: 10.3978/j.issn.2304-3881.2014.12.06
  36. Yu L, Liu X, Li X, Yuan Z, Yang H, Zhang L, et al. Protective effects of SRT1720 via the HNF1α/FXR signalling pathway and anti-inflammatory mechanisms in mice with estrogen-induced cholestatic liver injury. Toxicol Lett 2016; 264: 1–11. doi: 10.1016/j.toxlet.2016.10.016
  37. Han JY, Lee S, Yang JH, Kim S, Sim J, Kim MG, et al. Korean Red Ginseng attenuates ethanol-induced steatosis and oxidative stress via AMPK/Sirt1 activation. J Ginseng Res 2015; 39(2): 105–15. doi: 10.1016/j.jgr.2014.09.001
  38. Wang S, Wan T, Ye M, Qiu Y, Pei L, Jiang R, et al. Nicotinamide riboside attenuates alcohol induced liver injuries via activation of SirT1/PGC-1α/mitochondrial biosynthesis pathway. Redox Biol 2018; 17: 89–98. doi: 10.1016/j.redox.2018.04.006
  39. Wang RH, Li C, Deng CX. Liver steatosis and increased ChREBP expression in mice carrying a liver specific SIRT1 null mutation under a normal feeding condition. Int J Biol Sci 2010; 6(7): 682–90. doi: 10.7150/ijbs.6.682
  40. Grimm AA, Brace CS, Wang T, Stormo GD, Imai S. A nutrient-sensitive interaction between Sirt1 and HNF-1α regulates Crp expression. Aging Cell 2011; 10(2): 305–17. doi: 10.1111/j.1474-9726.2010.00667.x
  41. Cantó C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 2012; 15(6): 838–47. doi: 10.1016/j.cmet.2012.04.022
  42. Kazgan N, Metukuri MR, Purushotham A, Lu J, Rao A, Lee S, et al. Intestine-specific deletion of SIRT1 in mice impairs DCoH2-HNF-1α-FXR signaling and alters systemic bile acid homeostasis. Gastroenterology 2014; 146(4): 1006–16. doi: 10.1053/j.gastro.2013.12.029
  43. Hartmann P, Hochrath K, Horvath A, Chen P, Seebauer CT, Llorente C, et al. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 2018; 67(6): 2150–66. doi: 10.1002/hep.29676
  44. You M, Zhou Z, Daniels M, Jogasuria A. Endocrine adiponectin-FGF15/19 axis in ethanol-induced inflammation and alcoholic liver injury. Gene Expr 2018; 18(2): 103–13. doi: 10.3727/105221617X15093738210295
  45. Wang J, Kim C, Jogasuria A, Han Y, Hu X, Wu J, et al. Myeloid cell-specific lipin-1 deficiency stimulates endocrine adiponectin-FGF15 axis and ameliorates ethanol-induced liver injury in mice. Sci Rep 2016; 6: 34117. doi: 10.1038/srep34117
  46. Xie G, Zhong W, Li H, Li Q, Qiu Y, Zheng X, et al. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. FASEB J 2013; 27(9): 3583–93. doi: 10.1096/fj.13-231860
  47. Wu W, Zhu B, Peng X, Zhou M, Jia D, Gu J. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease. Biochem Biophys Res Commun 2014; 443(1): 68–73. doi: 10.1016/j.bbrc.2013.11.057
  48. Hu X, Jogasuria A, Wang J, Kim C, Han Y, Shen H, et al. MitoNEET deficiency alleviates experimental alcoholic steatohepatitis in mice by stimulating endocrine adiponectin-Fgf15 axis. J Biol Chem 2016; 291(43): 22482–95. doi: 10.1074/jbc.M116.737015
  49. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Gut microbiota, cirrhosis, and alcohol regulate bile acid metabolism in the gut. Dig Dis 2015; 33(3): 338–45. doi: 10.1159/000371678
  50. Kang DJ, Hylemon PB, Gillevet PM, Sartor RB, Betrapally NS, Kakiyama G, et al. Gut microbial composition can differentially regulate bile acid synthesis in humanized mice. Hepatol Commun 2017; 1(1): 61–70. doi: 10.1002/hep4.1020
How to Cite
Xue M., Liang H., Zhou Z., Liu Y., He X., Zhang Z., Sun T., Yang J., Qin Y., & Qin K. (2021). Effect of fucoidan on ethanol-induced liver injury and steatosis in mice and the underlying mechanism. Food & Nutrition Research, 65. https://doi.org/10.29219/fnr.v65.5384
Original Articles