Recombinant CRAMP-producing Lactococcus lactis attenuates dextran sulfate sodium-induced colitis by colonic colonization and inhibiting p38/NF-κB signaling

  • Jiahong Li State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu; and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
  • Shiwen Yu Department of Obstetrics, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, P. R. China
  • Xiaohua Pan State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu; and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
  • Ming Zhang State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu; and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
  • Zhuwu Lv Department of Obstetrics, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, P. R. China
  • Li-Long Pan Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P. R. China
  • Jia Sun State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu; and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
Keywords: CRAMP; colitis; Lactococcus lactis NZ9000; Usp45; probiotics.


Background: Inflammatory bowel diseases (IBDs) are generally characterized by persistent abdominal pain and diarrhea caused by chronic inflammation in the intestine. Cathelicidins are antimicrobial peptides with pleiotropic roles in anti-infection, wound healing, and immune modulation. However, the sensitivity to the acidic environment and short half-life of cathelicidins limit their application in IBD treatment. Recombinant cathelicidin-related antimicrobial peptide (CRAMP)-producing Lactococcus lactis may represent a potential approach for IBD therapy.

Objective: The aim of this study was to develop recombinant CRAMP-producing L. lactis NZ9000 and explore the role and mechanism of recombinant L. lactis NZ9000 expressing CRAMP in colitis.

Design: We constructed two strains of CRAMP-producing L. lactis NZ9000 with different plasmids pMG36e (L.L-pMU45CR) or pNZ8148 (L.L-pNU45CR), which use a Usp45 secretion signal to drive the secretion of CRAMP. Bacterial suspensions were orally supplemented to mice with a syringe for 4 days after dextran sodium sulfate (DSS) treatment. Body weight change, disease active score, colon length, and colonic histology were determined. The expression of tight junction (ZO-1, ZO-2, and Occludin) and cytokines (IL-6, IL-1β, TNF-α, and IL-10) in colon was performed by qPCR. The expression of p-ERK, p-p38, and p-p65 was determined by Western blot analysis.

Results: Both CRAMP-producing L. lactis NZ9000 strains protected against colitis, as shown by reduced weight loss and disease activity score, improved colon shortening, and histopathological injury. In addition, CRAMP-producing L. lactis NZ9000 restored gut barrier by upregulating ZO-1, ZO-2, and occludin. Moreover, CRAMP-producing L. lactis NZ9000 regulated the colonic cytokines profile with reduced IL-6, IL-1β, and TNF-α production, and increased IL-10 production. By further analysis, we found that CRAMP-producing L. lactis NZ9000 reduced the expression of p-p38 and p-p65.

Conclusions: Together, our data suggested that CRAMP-secreting L. lactis NZ9000 attenuated dextran sulfate sodium-induced colitis by colonic colonization and inhibiting p38/NF-κB signaling. Orally administered recombinant CRAMP-secreting L. lactis NZ9000 represents a potential strategy for colitis therapy.


Download data is not yet available.


  1. Ramos GP, Papadakis KA. Mechanisms of disease: inflammatory bowel diseases. Mayo Clinic Proc 2019; 94: 155–65. doi: 10.1016/j.mayocp.2018.09.013
  2. Choi CR, Bakir IA, Hart AL, Graham TA. Clonal evolution of colorectal cancer in IBD. Nat Rev 2017; 14: 218–29. doi: 10.1038/nrgastro.2017.1
  3. Gecse KB, Vermeire S. Differential diagnosis of inflammatory bowel disease: imitations and complications. Lancet 2018; 3: 644–53. doi: 10.1016/S2468-1253(18)30159-6
  4. Zenlea T, Peppercorn MA. Immunosuppressive therapies for inflammatory bowel disease. World J Gastroenterol 2014; 20: 3146–52. doi: 10.3748/wjg.v20.i12.3146
  5. Wang Y, Parker CE, Feagan BG, MacDonald JK. Oral 5-aminosalicylic acid for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev 2016; 2016: CD000544. doi: 10.1002/14651858.CD000544.pub4
  6. Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nature Rev 2012; 12: 503–16. doi: 10.1038/nri3228
  7. Pound LD, Patrick C, Eberhard CE, Mottawea W, Wang G S, Abujamel T, et al. Cathelicidin antimicrobial peptide: a novel regulator of islet function, islet regeneration, and selected gut bacteria. Diabetes 2015; 64: 4135–47. doi: 10.2337/db15-0788
  8. Hancock RE, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev 2016; 16: 321–34. doi: 10.1038/nri.2016.29
  9. Koziolek M, Schneider F, Grimm M, Modebeta C, Seekamp A, Roustom T, et al. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies. J Contr Release 2015; 220: 71–8. doi: 10.1016/j.jconrel.2015.10.022
  10. Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 1998; 273: 3718–24. doi: 10.1074/jbc.273.6.3718
  11. Yu K, Park K, Kang SW, Shin SY, Hahm KS, Kim Y. Solution structure of a cathelicidin-derived antimicrobial peptide, CRAMP as determined by NMR spectroscopy. J Peptide Res 2002; 60: 1–9. doi: 10.1034/j.1399-3011.2002.01968.x
  12. Lopez-Garcia B, Lee PH, Yamasaki K, Gallo RL. Anti-fungal activity of cathelicidins and their potential role in Candida albicans skin infection. J Investig Dermatol 2005; 125: 108–15. doi: 10.1111/j.0022-202X.2005.23713.x
  13. Singh D, Vaughan R, Kao CC. LL-37 peptide enhancement of signal transduction by toll-like receptor 3 is regulated by pH: identification of a peptide antagonist of LL-37. J Biol Chem 2014; 289: 27614–24. doi: 10.1074/jbc.M114.582973
  14. Coqueiro AY, Raizel R, Bonvini A, Tirapegui J, Rogero MM. Probiotics for inflammatory bowel diseases: a promising adjuvant treatment. Int J Food Sci Nutr 2019; 70: 20–9. doi: 10.1080/09637486.2018.1477123
  15. Jakubczyk D, Leszczynska K, Gorska S. The effectiveness of probiotics in the treatment of inflammatory bowel disease (IBD) – a critical review. Nutrients 2020; 12: 1973. doi: 10.3390/nu12071973
  16. Rottiers P, De Smedt T, Steidler L. Modulation of gut-associated lymphoid tissue functions with genetically modified Lactococcus lactis. Int Rev Immunol 2009; 28: 465–86. doi: 10.3109/08830180903197498
  17. Wu C, Huang J, Zhou R. Genomics of lactic acid bacteria: current status and potential applications. Crit Rev Microbiol 2017; 43: 393–404. doi: 10.1080/1040841X.2016.1179623
  18. Liu S, Li Y, Deng B, Xu Z. Recombinant Lactococcus lactis expressing porcine insulin-like growth factor I ameliorates DSS-induced colitis in mice. BMC Biotechnol 2016; 16: 25. doi: 10.1186/s12896-016-0255-z
  19. Shigemori S, Watanabe T, Kudoh K, Ihara M, Nigar S, Yamamoto Y, et al. Oral delivery of Lactococcus lactis that secretes bioactive heme oxygenase-1 alleviates development of acute colitis in mice. Microbial Cell Fact 2015; 14: 189. doi: 10.1186/s12934-015-0378-2
  20. Gallo RL, Kim KJ, Bernfield M, Kozak CA, Zanetti M, Merluzzi L, et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 1997; 272: 13088–93. doi: 10.1074/jbc.272.20.13088
  21. van Asseldonk M, Rutten G, Oteman M, Siezen RJ, de Vos WM, Simons G. Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 1990; 95: 155–60. doi: 10.1016/0378-1119(90)90428-t
  22. van de Guchte M, van der Vossen JM, Kok J, Venema G. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl Environ Microbiol 1989; 55: 224–28. doi: 10.1128/AEM.55.1.​224-228
  23. Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 2005; 68: 705–17. doi: 10.1007/s00253-005-0107-6
  24. Holo H, Nes IF. Transformation of Lactococcus by electroporation. Methods Mol Biol 1995; 47: 195–9. doi: 10.1385/​0-89603-310-4:195
  25. Han Y, Song M, Gu M, Ren D, Zhu X, Cao X, et al. Dietary intake of whole strawberry inhibited colonic inflammation in dextran-sulfate-sodium-treated mice via restoring immune homeostasis and alleviating gut microbiota dysbiosis. J Agric Food Chem 2019; 67: 9168–77. doi: 10.1021/acs.jafc.8b05581
  26. Kim JJ, Shajib MS, Manocha MM, Khan WI. Investigating intestinal inflammation in DSS-induced model of IBD. J Vis Exp 2012; (60): 3678. doi: 10.3791/3678
  27. Pan X, Fang X, Wang F, Li H, Niu W, Liang W, et al. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms. Br J Pharmacol 2019; 176: 4446–61. doi: 10.1111/bph.14806
  28. Deng F, He S, Cui S, Shi Y, Tan Y, Li Z, et al. A molecular targeted immunotherapeutic strategy for ulcerative colitis via dual-targeting nanoparticles delivering miR-146b to intestinal macrophages. J Crohns Colitis 2019; 13: 482–94. doi: 10.1093/ecco-jcc/jjy181
  29. Katakura K, Lee J, Rachmilewitz D, Li G, Eckmann L, Raz E. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J Clin Investig 2005; 115: 695–702. doi: 10.1172/JCI22996
  30. Pan X, Li J, Tu X, Wu C, Liu H, Luo Y, et al. Lysine-specific demethylase-1 regulates fibroblast activation in pulmonary fibrosis via TGF-beta1/Smad3 pathway. Pharmacol Res 2019; 152: 104592. doi: 10.1016/j.phrs.2019.104592
  31. Sun J, Furio L, Mecheri R, van der Does A M, Lundeberg E, Saveanu L, et al. Pancreatic beta-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 2015; 43: 304–17. doi: 10.1016/j.immuni.2015.07.013
  32. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 1997; 25: 3389–402. doi: 10.1093/nar/25.17.3389
  33. Le Loir Y, Gruss A, Ehrlich SD, Langella P. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol 1998; 180: 1895–903. doi: 10.1128/JB.180.7.1895-1903
  34. Li J, Pan X, Yang J, Jia L, Wu C, Liu H, et al. Enteral virus depletion modulates experimental acute pancreatitis via toll-like receptor 9 signaling. Biochem Pharmacol 2020; 171: 113710. doi: 10.1016/j.bcp.2019.113710
  35. Hernandez-Valdes JA, Huang C, Kok J, Kuipers OP. Another breaker of the wall: the biological function of the Usp45 protein of Lactococcus lactis. Appl Environ Microbiol 2020; 86: e00903-00920. doi: 10.1128/AEM.00903-20
  36. Tran DH, Wang J, Ha C, Ho W, Mattai SA, Oikonomopoulos A, et al. Circulating cathelicidin levels correlate with mucosal disease activity in ulcerative colitis, risk of intestinal stricture in Crohn’s disease, and clinical prognosis in inflammatory bowel disease. BMC Gastroenterol 2017; 17: 63. doi: 10.1186/s12876-017-0619-4
  37. Miner-Williams WM, Stevens BR, Moughan PJ. Are intact peptides absorbed from the healthy gut in the adult human? Nutr Res Rev 2014; 27: 308–329. doi: 10.1017/S0954422414000225
  38. Koon HW, Shih DQ, Chen J, Bakirtzi K, Hing TC, Law I, et al. Cathelicidin signaling via the toll-like receptor protects against colitis in mice. Gastroenterology 2011; 141: 1852–63.e1851–3. doi: 10.1053/j.gastro.2011.06.079
  39. Tai EK, Wu WK, Wong HP, Lam EK, Yu L, Cho CH. A new role for cathelicidin in ulcerative colitis in mice. Exp Biol Med 2007; 232: 799–808. doi: 10.3181/00379727-232-2320799
  40. Pinheiro da Silva F, Gallo RL, Nizet V. Differing effects of exogenous or endogenous cathelicidin on macrophage toll-like receptor signaling. Immunol Cell Biol 2009; 87: 496–500. doi: 10.1038/icb.2009.19
  41. Chou HC, Chen CM. Cathelicidin attenuates hyperoxia-induced intestinal injury through inhibition of NF-kappaB activity in newborn rats. Exp Mol Pathol 2020; 113: 104269. doi: 10.1016/j.yexmp.2019.104269
  42. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263–274. doi: 10.1016/0092-8674(93)80068-p
  43. Mookherjee N, Hamill P, Gardy J, Blimkie D, Falsafi R, Chikatamarla A, et al. Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. Mol Biosyst 2009; 5: 483–96. doi: 10.1039/b813787k
  44. Yu J, Mookherjee N, Wee K, Bowdish DM, Pistolic J, Li Y, et al. Host defense peptide LL-37, in synergy with inflammatory mediator IL-1beta, augments immune responses by multiple pathways. J Immunol 2007; 179: 7684–91. doi: 10.4049/jimmunol.179.11.7684
  45. Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Hokamp K, et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 2006; 176: 2455–64. doi: 10.4049/jimmunol.​176.4.2455
  46. Nijnik A, Pistolic J, Wyatt A, Tam S, Hancock RE. Human cathelicidin peptide LL-37 modulates the effects of IFN-gamma on APCs. J Immunol 2009; 183: 5788–98. doi: 10.4049/jimmunol.0901491
  47. Denizot J, Sivignon A, Barreau F, Darcha C, Chan HF, Stanners CP, et al. Adherent-invasive Escherichia coli induce claudin-2 expression and barrier defect in CEABAC10 mice and Crohn’s disease patients. Inflam Bowel Dis 2012; 18: 294–304. doi: 10.1002/ibd.21787
  48. Lee SH. Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res 2015; 13: 11–18. doi: 10.5217/ir.2015.13.1.11
  49. Tatsuta M, Kan OK, Ishii Y, Yamamoto N, Ogawa T, Fukuyama S, et al. Effects of cigarette smoke on barrier function and tight junction proteins in the bronchial epithelium: protective role of cathelicidin LL-37. Respir Res 2019; 20: 251. doi: 10.1186/s12931-019-1226-4
  50. Akiyama T, Niyonsaba F, Kiatsurayanon C, Nguyen TT, Ushio H, Fujimura T, et al. The human cathelicidin LL-37 host defense peptide upregulates tight junction-related proteins and increases human epidermal keratinocyte barrier function. J Innate Immun 2014; 6: 739–53. doi: 10.1159/000362789
How to Cite
Li J., Yu S., Pan X., Zhang M., Lv Z., Pan L.-L., & Sun J. (2021). Recombinant CRAMP-producing Lactococcus lactis attenuates dextran sulfate sodium-induced colitis by colonic colonization and inhibiting p38/NF-κB signaling. Food & Nutrition Research, 65.
Original Articles