Citrus maxima and tea regulate AMPK signaling pathway to retard the progress of nonalcoholic fatty liver disease

  • Shuai Wen
  • Ran An
  • Zhi-Gang Li
  • Zhao-Xiang Lai
  • Dong-Li Li
  • Jun-Xi Cao
  • Ruo-Hong Chen
  • Wen-Ji Zhang
  • Qiu-Hua Li
  • Xing-Fei Lai
  • Shi-Li Sun Tea Research Institute, Guangdong Academy of Agricultural Sciences/ Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization
  • Ling-Li Sun
Keywords: Non-alcoholic fatty liver disease; tea; Citrus maxima; AMPK

Abstract

Background: Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease that easily induces hepatitis, cirrhosis, and even liver cancer. The long-term use of NAFLD therapeutic drugs produces toxicity and drug resistance. Therefore, it is necessary to develop high efficiency and low-toxicity active ingredients to alleviate NAFLD.

Objective: This study aimed to reveal the role and mechanism of a new functional food CMT in alleviating NAFLD.

Results: In the ob/ob fatty liver mice models, the CMT extracts significantly inhibited the weight gain of the mice and reduced the accumulation of white fat. The anatomical and pathological results showed that CMT relieved fatty liver in mice and reduced excessive lipid deposition and inflammatory infiltration. Serological and liver biochemical indicators suggest that CMT reduced dyslipidemia and liver damage caused by fatty liver. CMT obviously activated the adenosine 5′-monophosphate-activated protein kinase (AMPK)/acetyl-coA carboxylase (ACC) and AMPK/fatty acid synthase (FAS) signaling pathways, promoted fat oxidation, and inhibited synthesis. Moreover, CMT regulated the expression of inflammatory factors to relieve hepatitis caused by NAFLD.

Conclusion: The study explained the role and mechanism of CMT in alleviating NAFLD and suggested that the active ingredients of CMT might be beneficial in NAFLD therapy.

Downloads

Download data is not yet available.

References


  1. Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol 2013; 10(11): 656–65. doi: 10.1038/nrgastro.2013.183

  2. Pfeiffer RM, Rotman Y, O’Brien TR. Genetic determinants of cirrhosis and hepatocellular carcinoma due to fatty liver disease: what’s the score? Hepatology 2020; 72(3): 794–96. doi: 10.1002/hep.31413

  3. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int 2017; 37 Suppl 1: 81–84. doi: 10.1111/liv.13299

  4. Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med 2016; 67: 103–17. doi: 10.1146/annurev-med-090514-013832

  5. Rial SA, Karelis AD, Bergeron KF, Mounier C. Gut microbiota and metabolic health: the potential beneficial effects of a medium chain triglyceride diet in obese individuals. Nutrients 2016; 8(5): 281–99. doi: 10.3390/nu8050281

  6. Aso Y, Kato K, Sakurai S, Kishi H, Shimizu M, Jojima T, et al. Impact of dapagliflozin, an SGLT2 inhibitor, on serum levels of soluble dipeptidyl peptidase-4 in patients with type 2 diabetes and non-alcoholic fatty liver disease. Int J Clin Pract 2019; 73(5): e13335. doi: 10.1111/ijcp.13335

  7. Kaufmann B, Reca A, Wang B, Friess H, Feldstein AE, Hartmann D. Mechanisms of nonalcoholic fatty liver disease and implications for surgery. Langenbecks Arch Surg 2020; 406(1): 1–17. doi: 10.1007/s00423-020-01965-1

  8. Yan J, Yao B, Kuang H, Yang X, Huang Q, Hong T, et al. Liraglutide, sitagliptin, and insulin glargine added to metformin: the effect on body weight and intrahepatic lipid in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease. Hepatology 2019; 69(6): 2414–26. doi: 10.1002/hep.30320

  9. Kothari S, Dhami-Shah H, Shah SR. Antidiabetic drugs and statins in nonalcoholic fatty liver disease. J Clin Exp Hepatol 2019; 9(6): 723–30. doi: 10.1016/j.jceh.2019.06.003

  10. Treviño LS, Katz TA. Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease. Endocrinology 2018; 159(1): 20–31. doi: 10.1210/en.2017-00887

  11. Xu H, Chen GF, Ma YS, Zhang HW, Zhou Y, Liu GH, et al. Hepatic proteomic changes and Sirt1/AMPK signaling activation by oxymatrine treatment in rats with non-alcoholic steatosis. Front Pharmacol 2020; 11: 216–27. doi: 10.3389/fphar.2020.00216

  12. Gan L, Meng ZJ, Xiong RB, Guo JQ, Lu XC, Zheng ZW, et al. Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice. Acta Pharmacol Sin 2015; 36(5): 597–605. doi: 10.1038/aps.2015.11

  13. Cheraghpour M, Imani H, Ommi S, Alavian SM, Karimi-Shahrbabak E, Hedayati M, et al. Hesperidin improves hepatic steatosis, hepatic enzymes, and metabolic and inflammatory parameters in patients with nonalcoholic fatty liver disease: a randomized, placebo-controlled, double-blind clinical trial. Phytother Res 2019; 33(8): 2118–25. doi: 10.1002/ptr.6406

  14. Zhu Z, Wu H, Su W, Shi R, Li P, Liao Y, et al. Effects of total flavonoids from Exocarpium Citri Grandis on air pollution particle-induced pulmonary inflammation and oxidative stress in mice. J Food Sci 2019; 84(12): 3843–49. doi: 10.1111/1750-3841.14966

  15. Kongpichitchoke T, Chiu MT, Huang TC, Hsu JL. Gallic acid content in Taiwanese teas at different degrees of fermentation and its antioxidant activity by inhibiting PKCδ activation: in vitro and in silico studies. Molecules 2016; 21(10): 1346–56. doi: 10.3390/molecules21101346

  16. Nicoletti CF, Delfino HBP, Pinhel M, Noronha NY, Pinhanelli VC, Quinhoneiro DCG, et al. Impact of green tea epigallocatechin-3-gallate on HIF1-α and mTORC2 expression in obese women: anti-cancer and anti-obesity effects? Nutr Hosp 2019; 36(2): 315–20. doi: 10.20960/nh.2216

  17. Miyata Y, Shida Y, Hakariya T, Sakai H. Anti-cancer effects of green tea polyphenols against prostate cancer. Molecules 2019; 24(1): 193–211. doi: 10.3390/molecules24010193

  18. Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review. Crit Rev Food Sci Nutr 2018; 58(6): 924–41. doi: 10.1080/10408398.2016.1231168

  19. An R, Wen S, Li DL, Li QH, Lai XF, Zhang WJ, et al. Mixtures of tea and Citrus maxima (pomelo) alleviate lipid deposition in HepG2 cells through the AMPK/ACC signaling pathway. J Med Food 2020; 23(9): 943–51. doi: 10.1089/jmf.2020.4706

  20. Fang K, Wu F, Chen G, Dong H, Li J, Zhao Y, et al. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells. BMC Complement Altern Med 2019; 19(1): 255–66. doi: 10.1186/s12906-019-2671-9

  21. Li Z, Lan D, Zhang H, Zhang H, Chen X, Sun J. Electroacupuncture mitigates skeletal muscular lipid metabolism disorder related to high-fat-diet induced insulin resistance through the AMPK/ACC signaling pathway. Evid Based Complement Alternat Med 2018; 2018: 7925842–49. doi: 10.1155/2018/7925842

  22. Yuan E, Duan X, Xiang L, Ren J, Lai X, Li Q, et al. Aged Oolong tea reduces high-fat diet-induced fat accumulation and dyslipidemia by regulating the AMPK/ACC signaling pathway. Nutrients 2018; 10(2): 187–99. doi: 10.3390/nu10020187

  23. Gill C, Vatcheva KP, Pan JJ, Smulevitz B, McPherson DD, Fallon M, et al. Frequency of nonalcoholic fatty liver disease and subclinical atherosclerosis among young mexican americans. Am J Cardiol 2017; 119(11): 1717–22. doi: 10.1016/j.amjcard.2017.03.010

  24. Li L, Shi M, Salerno S. Microbial and metabolomic remodeling by a formula of Sichuan dark tea improves hyperlipidemia in apoE-deficient mice. PLos One 2019; 14(7): e0219010. doi: 10.1371/journal.pone.0219010

  25. Lin Z, Wu ZF, Jiang CH, Zhang QW, Ouyang S, Che CT, et al. The chloroform extract of Cyclocarya paliurus attenuates high-fat diet induced non-alcoholic hepatic steatosis in Sprague Dawley rats. Phytomedicine 2016; 23(12): 1475–83. doi: 10.1016/j.phymed.2016.08.003

  26. Zhou J, Ho CT, Long P, Meng Q, Zhang L, Wan X. Preventive efficiency of green tea and its components on nonalcoholic fatty liver disease. J Agric Food Chem 2019; 67(19): 5306–17. doi: 10.1021/acs.jafc.8b05032

  27. Xia HM, Wang J, Xie XJ, Xu LJ, Tang SQ. Green tea polyphenols attenuate hepatic steatosis, and reduce insulin resistance and inflammation in high-fat diet-induced rats. Int J Mol Med 2019; 44(4): 1523–30. doi: 10.3892/ijmm.2019.4285

  28. Lee C, Kim J, Wang S, Sung S, Kim N, Lee HH, et al. Hepatoprotective effect of kombucha tea in rodent model of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Int J Mol Sci 2019; 20(9): 2369–86. doi: 10.3390/ijms20092369

  29. Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, et al. Nonalcoholic fatty liver disease. Nat Rev Dis Primers 2015; 1: 15080–139. doi: 10.1038/nrdp.2015.80

  30. Moon YA, Shah NA, Mohapatra S, Warrington JA, Horton JD. Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem 2001; 276(48): 45358–66. doi: 10.1074/jbc.M108413200

  31. Gao S, Moran TH, Lopaschuk GD, Butler AA. Hypothalamic malonyl-CoA and the control of food intake. Physiol Behav 2013; 122: 17–24. doi: 10.1016/j.physbeh.2013.07.014

  32. Xiao W, Ren M, Zhang C, Li S, An W. Amelioration of nonalcoholic fatty liver disease by hepatic stimulator substance via preservation of carnitine palmitoyl transferase-1 activity. Am J Physiol Cell Physiol 2015; 309(4): 215–27. doi: 10.1152/ajpcell.00133.2014

  33. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 2013; 19(12): 1649–54. doi: 10.1038/nm.3372

  34. Ke R, Xu Q, Li C, Luo L, Huang D. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int 2018; 42(4): 384–92. doi: 10.1002/cbin.10915

  35. Ford RJ, Fullerton MD, Pinkosky SL, Day EA, Scott JW, Oakhill JS, et al. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J 2015; 468(1): 125–32. doi: 10.1042/bj20150125

  36. Ge JF, Walewski JL, Anglade D, Berk PD. Regulation of hepatocellular fatty acid uptake in mouse models of fatty liver disease with and without functional leptin signaling: roles of NfKB and SREBP-1C and the effects of spexin. Semin Liver Dis 2016; 36(4): 360–72. doi: 10.1055/s-0036-1597248

  37. Rothenberg DO, Zhou C, Zhang L. A review on the weight-loss effects of oxidized tea polyphenols. Molecules 2018; 23(5): 1176–91. doi: 10.3390/molecules23051176

  38. Sun Y, Wang Y, Song P, Wang H, Xu N, Wang Y, et al. Anti-obesity effects of instant fermented teas in vitro and in mice with high-fat-diet-induced obesity. Food Funct 2019; 10(6): 3502–13. doi: 10.1039/c9fo00162j

  39. Chen Y, Zhang X, Cheng L, Zheng X, Zhang Z. The evaluation of the quality of Feng Huang Oolong teas and their modulatory effect on intestinal microbiota of high-fat diet-induced obesity mice model. Int J Food Sci Nutr 2018; 69(7): 842–56. doi: 10.1080/09637486.2017.1420757

  40. Santamarina AB, Oliveira JL, Silva FP, Carnier J, Mennitti LV, Santana AA, et al. Green tea extract rich in epigallocatechin-3-gallate prevents fatty liver by AMPK activation via LKB1 in mice fed a high-fat diet. PLos One 2015; 10(11): e0141227. doi: 10.1371/journal.pone.0141227

  41. Tan Y, Kim J, Cheng J, Ong M, Lao WG, Jin XL, et al. Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats. World J Gastroenterol 2017; 23(21): 3805–14. doi: 10.3748/wjg.v23.i21.3805

  42. Zhang W, An R, Li Q, Sun L, Lai X, Chen R, et al. Theaflavin TF3 relieves hepatocyte lipid deposition through activating an AMPK signaling pathway by targeting plasma kallikrein. J Agric Food Chem 2020; 68(9): 2673–83. doi: 10.1021/acs.jafc.0c00148

  43. Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 2017; 541(7635): 41–45. doi: 10.1038/nature20791

  44. Zhu Y, Liu R, Shen Z, Cai G. Combination of luteolin and lycopene effectively protect against the ‘two-hit’ in NAFLD through Sirt1/AMPK signal pathway. Life Sci 2020; 256: 117990–8001. doi: 10.1016/j.lfs.2020.117990

  45. Periasamy S, Chien SP, Chang PC, Hsu DZ, Liu MY. Sesame oil mitigates nutritional steatohepatitis via attenuation of oxidative stress and inflammation: a tale of two-hit hypothesis. J Nutr Biochem 2014; 25(2): 232–40. doi: 10.1016/j.jnutbio.2013.10.013

  46. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482(7384): 179–85. doi: 10.1038/nature10809

  47. Soares e Silva AK, de Oliveira Cipriano Torres D, dos Santos Gomes FO, dos Santos Silva B, Lima Ribeiro E, Costa Oliveira A, et al. LPSF/GQ-02 inhibits the development of hepatic steatosis and inflammation in a mouse model of non-alcoholic fatty liver disease (NAFLD). PLos One 2015; 10(4): e0123787. doi: 10.1371/journal.pone.0123787

  48. Zhang B, Xu D, She L, Wang Z, Yang N, Sun R, et al. Silybin inhibits NLRP3 inflammasome assembly through the NAD+/SIRT2 pathway in mice with nonalcoholic fatty liver disease. FASEB J 2018; 32(2): 757–67. doi: 10.1096/fj.201700602R

  49. Zhang NP, Liu XJ, Xie L, Shen XZ, Wu J. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. Lab Invest 2019; 99(6): 749–63. doi: 10.1038/s41374-018-0177-6

  50. Hodges JK, Sasaki GY, Bruno RS. Anti-inflammatory activities of green tea catechins along the gut-liver axis in nonalcoholic fatty liver disease: lessons learned from preclinical and human studies. J Nutr Biochem 2020: 108478–523. doi: 10.1016/j.jnutbio.2020.108478

  51. Liu B, Zhang J, Sun P, Yi R, Han X, Zhao X. Raw bowl tea (Tuocha) polyphenol prevention of nonalcoholic fatty liver disease by regulating intestinal function in mice. Biomolecules 2019; 9(9): 749–63. doi: 10.3390/biom9090435

Published
2022-06-10
How to Cite
Wen S., An R., Li Z.-G., Lai Z.-X., Li D.-L., Cao J.-X., Chen R.-H., Zhang W.-J., Li Q.-H., Lai X.-F., Sun S.-L., & Sun L.-L. (2022). <em>Citrus maxima</em&gt; and tea regulate AMPK signaling pathway to retard the progress of nonalcoholic fatty liver disease. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.7652
Section
Original Articles

Most read articles by the same author(s)