Protective effect of the total alkaloid extract from Bulbus Fritillariae Pallidiflorae on cigarette smoke-induced Beas-2B cell injury model and transcriptomic analysis

  • Xiaoyu Wang Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
  • Xiao Liu Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
  • Er-Bu AGA Medical College of Tibet University, Lasa, Tibet, China
  • Wai Ming Tse Nin Jiom Medicine Manufactory (H.K.) Limited, Hong Kong, China
  • Kathy Wai Gaun Tse Nin Jiom Medicine Manufactory (H.K.) Limited, Hong Kong, China
  • Bengui Ye Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University
Keywords: Bulbus Fritillariae Pallidiflorae, total alkaloid, COPD, cigarette smoke extract, Beas-2B cell, transcriptomic

Abstract

Background: Bulbus Fritillariae Pallidiflorae (BFP) is a traditional Chinese medicine that has long been used to treat lung diseases, but the active components and mechanism are still unclear.

Objective: This study aimed to investigate the effect and mechanism of the total alkaloid extract from BFP (BFP-TA) on cigarette smoke extract (CSE)-induced Beas-2B cells injury.

Design: The Beas-2B cells injury model was induced by 2% CSE, then the effect of BFP-TA on the levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and malondialdehyde (MDA) was detected according to the instructions of the T-AOC assay kit, the SOD detection kit and the MDA detection kit, and the production of ROS was detected by fluorescence microscopy. The effect of BFP-TA on Beas-2B cells apoptosis was detected by flow cytometry, and the effect of BFP-TA on related protein expression was detected by western blot. Subsequently, the effect of BFP-TA on differentially expressed genes (DEGs) in CSE-induced Beas-2B cells was studied by transcriptomic sequencing, and the expression of DEGs was verified by quantitative real-time polymerase chain reaction (qPCR).

Results: The results showed that BFP-TA could attenuate CSE-induced oxidative damage in Beas-2B cells by elevating T-AOC and SOD levels while inhibiting ROS and MDA levels, and the mechanism was potentially related to the SIRT1/Nrf2/Keap1 signaling pathway. Furthermore, BFP-TA could inhibit CSE-induced apoptosis by inhibiting the protein expression of Bax, MST1 and FOXO3a, and exert anti-inflammatory effect by inhibiting the activation of MAPK signaling pathway. Subsequently, transcriptome analysis and qPCR validation showed that BFP-TA could alleviate inflammation, oxidative stress, apoptosis and lipid metabolism disorders by regulating the expression of DEGs in PPAR and PI3K-Akt signaling pathways, thereby exerting a protective effect against CSE-induced Beas-2B cell injury.

Conclusion: This study is the first to demonstrate that BFP-TA could exert a protective effect on CSE-induced Beas-2B cell injury by exerting anti-inflammatory, antioxidant, anti-apoptotic and regulate lipid metabolism disorders.

Downloads

Download data is not yet available.

References


1.
Cao X, Wang Y, Chen Y, Zhao M, Liang L, Yang M, et al. Advances in traditional Chinese medicine for the treatment of chronic obstructive pulmonary disease. J Ethnopharmacol 2023; 307: 116229. doi: 10.1016/j.jep.2023.116229


2.
Kahnert K, Jörres RA, Behr J, Welte T. The diagnosis and treatment of COPD and its comorbidities. Deutsch Arztebl Int 2023; 120(25): 434–44. doi: 10.3238/arztebl.m2023.027


3.
Zhao Z, Xu Z, Chang J, He L, Zhang Z, Song X, et al. Sodium pyruvate exerts protective effects against cigarette smoke extract-induced ferroptosis in alveolar and bronchial epithelial cells through the GPX4/Nrf2 axis. J Inflamm 2023; 20(1): 28. doi: 10.1186/s12950-023-00347-w


4.
Xue M, Peng N, Zhu X, Zhang H. Hsa_circ_0006872 promotes cigarette smoke-induced apoptosis, inflammation and oxidative stress in HPMECs and BEAS-2B cells through the miR-145-5p/NF-κB axis. Biochem Bioph Res Co 2021; 534: 553–60. doi: 10.1016/j.bbrc.2020.11.044


5.
Li LY, Zhang CT, Zhu FY, Zheng G, Liu YF, Liu K, et al. Potential natural small molecular compounds for the treatment of chronic obstructive pulmonary disease: an overview. Front Pharmacol 2022; 13: 821941. doi: 10.3389/fphar.2022.821941


6.
Zhao J. Fritillaria family. J Benef Read Drug Inform Med Adv 2012; 10: 33–4.


7.
An YL, Wei WL, Li HJ, Li ZW, Yao CL, Qu H, et al. An enhanced strategy integrating offline superimposed two-dimensional separation with mass defect filter and diagnostic ion filter: comprehensive characterization of steroid alkaloids in Fritillariae Pallidiflorae Bulbus as a case study. J Chromatogr A 2021; 1643: 462029. doi: 10.1016/j.chroma.2021.462029


8.
Li X, Luo Y, Geng Z, Guo X, Liang Y, Guo L, et al. Determination of 21 inorganic elements in Fritillariae pallidiflorae Bulbus by ICP-MS. West China J of Pharm Sci 2021; 36(04): 447–52. doi: 10.13375/j.cnki.wcjps.2021.04.017


9.
Jin S. Medicinal plants of Yili region. Life World 1985; 03: 24–5.


10.
Jiao H, Chen X, Hu J, Liu H, Xue X. Review on chemical composition and biological activities of Fritillaria Pallidiflora. Guangdong Chem Ind 2023; 50(04): 92–93+86.


11.
Liu S, Yang T, Ming TW, Gaun TKW, Zhou T, Wang S, et al. Isosteroid alkaloids from Fritillaria cirrhosa bulbus as inhibitors of cigarette smoke-induced oxidative stress. Fitoterapia 2020; 140: 104434. doi: 10.1016/j.fitote.2019.104434


12.
Liu S, Yang T, Ming TW, Gaun TKW, Zhou T, Wang S, et al. Isosteroid alkaloids with different chemical structures from Fritillariae cirrhosae bulbus alleviate LPS-induced inflammatory response in RAW 264.7 cells by MAPK signaling pathway. Int Immunopharmacol 2020; 78: 106047. doi: 10.1016/j.intimp.2019.106047


13.
Jiao H, Liu Y, Xue X, Tang Q. Study on the mechanism of the isosteroid alkaloids from Bulbus Fritillariae Pallidiflorae regulating airway inflammation and airway remodeling in asthmatic rats through Wnt/β-catenin signaling pathway. Modern Tradit Chin Med Mater Medica-World Sci Technol 2020; 22(06): 1871–6.


14.
Jiao H, Liu H, Liu Y, Xue X, Tang Q. Study on the antitussive, expectorant and asthmatic effects of a compound formula of total akaloids and total flavonoid in Bulbus Fritillariae Pallidiflorae. Strait Pharm J 2020; 32(02): 15–8.


15.
Dang X, He B, Ning Q, Liu Y, Guo J, Niu G, et al. Alantolactone suppresses inflammation, apoptosis and oxidative stress in cigarette smoke-induced human bronchial epithelial cells through activation of Nrf2/HO-1 and inhibition of the NF-κB pathways. Resp Res 2020; 21(1): 95. doi: 10.1186/s12931-020-01358-4


16.
Xu W, Li F, Zhu L, Cheng M, Cheng Y. Pacenta polypeptide injection alleviates the fibrosis and inflammation in cigarette smoke extracts-induced BEAS-2B cells by modulating MMP-9/TIMP-1 signaling. J Biochem Mol Toxic 2023; 37(11): e23453. doi: 10.1002/jbt.2345317.


17.
Pai M, Erbu A, Wu Y, Tse WM, Tse KWG, Ye B. Total alkaloids of bulbus of Fritillaria cirrhosa alleviate bleomycin-induced inflammation and pulmonary fibrosis in rats by inhibiting TGF-β and NF-κB signaling pathway. Food Nutr Res 2023; 67: 10292. doi: 10.29219/fnr.v67.10292


18.
Liu C, Liu S, Tse WT, Tse KWG, Aga EB, Xiong H, et al. A distinction between Fritillaria Cirrhosa Bulbus and Fritillaria Pallidiflora Bulbus via LC-MS/MS in conjunction with principal component analysis and hierarchical cluster analysis. Sci Rep 2023; 13(1): 2735. doi: 10.1038/s41598-023-29631-8


19.
Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci 2007, 120(Pt 15): 2479–87. doi: 10.1242/jcs.001222


20.
Yuan F, Xie Q, Wu J, Bai Y, Mao B, Dong Y, et al. MST1 promotes apoptosis through regulating Sirt1-dependent p53 deacetylation. J Biol Chem 2011; 286(9): 6940–5. doi: 10.1074/jbc.M110.182543


21.
Barnes Peter J. Cellular and molecular mechanisms of asthma and COPD. Clin Sci 2017; 131(13): 1541–58. doi: 10.1042/cs20160487


22.
Lange P, Ahmed E, Lahmar ZM, Martinez FJ, Bourdin A. Natural history and mechanisms of COPD. Respirology 2021; 26(4): 298–321. doi: 10.1111/resp.14007


23.
Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, et al. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Tar 2020; 5(1): 248. doi: 10.1038/s41392-020-00345-x25


24.
Yi X, Li T, Wei X, He Z. Erythromycin attenuates oxidative stress-induced cellular senescence via the PI3K-mTOR signaling pathway in chronic obstructive pulmonary disease. Front Pharmacol 2022; 13: 1043474. doi: 10.3389/fphar.2022.1043474


25.
Liang S, Zheng Y, Lei L, Deng X, Ai J, Li Y, et al. Corydalis edulis total alkaloids (CETA) ameliorates cognitive dysfunction in rat model of Alzheimer disease through regulation of the antioxidant stress and MAP2/NF-κB. J Ethnopharmacol 2020; 251: 112540. doi: 10.1016/j.jep.2019.112540


26.
Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, et al. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 2022; 13: 943321. doi: 10.3389/fimmu.2022.943321


27.
Farage AE, Abdo W, Osman A, Abdel-Kareem MA, Hakami ZH, Alsulimani A, et al. Betulin prevents high fat diet-induced non-alcoholic fatty liver disease by mitigating oxidative stress and upregulating Nrf2 and SIRT1 in rats. Life Sci 2023; 322: 121688. doi: 10.1016/j.lfs.2023.121688


28.
Liu X, Ma Y, Luo L, Zeng Z, Zong D, Chen Y. Taxifolin ameliorates cigarette smoke-induced chronic obstructive pulmonary disease via inhibiting inflammation and apoptosis. Int Immunopharmacol 2023; 115: 109577. doi: 10.1016/j.intimp.2022.109577


29.
Yuan Z, Kim D, Shu S, Wu J, Guo J, Xiao L, et al. Phosphoinositide 3-kinase/Akt inhibits MST1-mediated pro-apoptotic signaling through phosphorylation of threonine 120. J Biol Chem 2016; 291(43): 22858. doi: 10.1074/jbc.A109.059675


30.
Lin XX, Yang XF, Jiang JX, Zhang SJ, Guan Y, Liu YN, et al. Cigarette smoke extract-induced BEAS-2B cell apoptosis and anti-oxidative Nrf-2 up-regulation are mediated by ROS-stimulated p38 activation. Toxicol Mech Methods 2014; 24(8): 575–83. doi: 10.3109/15376516.2014.956909


31.
Shen N, Gong T, Wang JD, Meng FL, Qiao L, Yang RL, et al. Cigarette smoke-induced pulmonary inflammatory responses are mediated by EGR-1/GGPPS/MAPK signaling. Am J Path 2011; 178(1): 110–8. doi: 10.1016/j.ajpath.2010.11.016


32.
Li D, Hu J, Wang T, Zhang X, Liu L, Wang H, et al. Silymarin attenuates cigarette smoke extract-induced inflammation via simultaneous inhibition of autophagy and ERK/p38 MAPK pathway in human bronchial epithelial cells. Sci Rep-UK 2016; 6: 37751. doi: 10.1038/srep37751


33.
Liu Y, Kong H, Cai H, Chen G, Chen H, Ruan W. Progression of the PI3K/Akt signaling pathway in chronic obstructive pulmonary disease. Front Pharmacol 2023; 14: 1238782. doi: 10.3389/fphar.2023.1238782


34.
Mizuno S, Ishizaki T, Kadowaki M, Akai M, Shiozaki K, Lguchi M, et al. p53 Signaling pathway polymorphisms associated with emphysematous changes in patients with COPD. Chest 2017; 152(1): 58–69. doi: 10.1016/j.chest.2017.03.012


35.
Cherif LS, Diabasana Z, Perotin JM, Ancel J, Petit LM, Devilliers M, et al. The nicotinic receptor polymorphism rs16969968 is associated with airway remodeling and inflammatory dysregulation in COPD patients. Cells, 2022, 11(19): 2937. doi: 10.3390/cells11192937


36.
He BF, Wu YX, Hu WP, Hua JL, Han Y, Zhang J. ROS induced the Rab26 promoter hypermethylation to promote cigarette smoking-induced airway epithelial inflammation of COPD through activation of MAPK signaling. Free Radic Biol Med 2023; 195: 359–70. doi: 10.1016/j.freeradbiomed.2023.01.001


37.
Chang JH, Lee YL, Laiman V, Han CL, Jheng YT, Lee KY, et al. Air pollution-regulated E-cadherin mediates contact inhibition of proliferation via the hippo signaling pathways in emphysema. Chem Biol Interact 2022; 351: 109763. doi: 10.1016/j.cbi.2021.10976


38.
Fujii WA-O, Kapellos TS, Baßler K, Handler K, Holsten L, Knoll R, et al. Alveolar macrophage transcriptomic profiling in COPD shows major lipid metabolism changes. ERJ Open Res 2021; 7(3): 00915-2020. Doi: 10.1183/23120541.00915-2020


39.
Li Q, Zhang H, Yan X, Zhao Z, Qiu J, Hu L, et al. Up-regulation of PPAR-γ involved in the therapeutic effect of icariin on cigarette smoke-induced inflammation. Pulm Pharmacol Ther 2023; 79: 102197. doi: 10.1016/j.pupt.2023.102197


40.
Yi E, Cao W, Zhang J, Lin B, Wang Z, Wang X, et al. Genetic screening of MMP1 as a potential pathogenic gene in chronic obstructive pulmonary disease. Life Sci 2023; 313: 121214. doi: 10.1016/j.lfs.2022.121214


41.
Adam G, Shiomi T, Monica G, Jarrod S, Vincent A, Becky M, et al. Suppression of cigarette smoke induced MMP1 expression by selective serotonin re-uptake inhibitors. FASEB J 2021; 35(7): e21519. doi: 10.1096/fj.202001966RR


42.
Waschki B, Kirsten AM, Holz O, Meyer T, Lichtinghagen R, Rabe KF, et al. Angiopoietin-like protein 4 and cardiovascular function in COPD. BMJ Open Respir Res 2016; 3(1): e000161. doi: 10.1136/bmjresp-2016-000161


43.
Wu YQ, Shen YC, Wang H, Zhang JL, Li DD, Zhang X, et al. Serum angiopoietin-like 4 is over-expressed in COPD patients: association with pulmonary function and inflammation. Eur Rev Med Pharmacol Sci 2016; 20(1): 44–53.


44.
Zheng Y, Ning P, Luo Q, He Y, Yu X, Liu X, et al. Inflammatory responses relate to distinct bronchoalveolar lavage lipidome in community-acquired pneumonia patients: a pilot study. Resp Res 2019; 20(1): 82. doi: 10.1186/s12931-019-1028-8


45.
Liu YJ, Li H, Tian Y, Han J, Wang XY, Li XY, et al. PCTR1 ameliorates lipopolysaccharide-induced acute inflammation and multiple organ damage via regulation of linoleic acid metabolism by promoting FADS1/FASDS2/ELOV2 expression and reducing PLA2 expression. Lab Invest 2020; 100(7): 904–15. doi: 10.1038/s41374-020-0412-9


46.
Zhou Z, Liang S, Zhou Z, Liu J, Zhang J, Meng X, et al. TGF-β1 promotes SCD1 expression via the PI3K-Akt-mTOR-SREBP1 signaling pathway in lung fibroblasts. Resp Res 2023; 24(1): 8. doi: 10.1186/s12931-023-02313-9


47.
Korkmaz FT, Shenoy AT, Symer EM, Baird LA, Odom CV, Arafa EI, et al. Lectin-like oxidized low-density lipoprotein receptor 1 attenuates pneumonia-induced lung injury. JCI Insight 2022; 7(23): e149955. doi: 10.1172/jci.insight.149955


48.
Liu Y, Kong H, Cai H, Chen G, Chen H, Ruan W. Progression of the PI3K/Akt signaling pathway in chronic obstructive pulmonary disease. Front Pharmacol 2023; 14: 1238782. doi: 10.3389/fphar.2023.1238782


49.
Zeng DX, Xu GP, Lei W, Wang R, Wang CG, Huang JA. Suppression of cyclin D1 by plasmid-based short hairpin RNA ameliorated experimental pulmonary vascular remodeling. Microvasc Res 2013; 90: 144–9. doi: 10.1016/j.mvr.2013.07.012


50.
Zhou S, Jiang H, Li M, Wu P, Sun L, Liu Y, et al. Circular RNA hsa_circ_0016070 is associated with pulmonary arterial hypertension by promoting PASMC proliferation. Mol Ther Nucleic Acids 2019; 18: 275–84. doi: 10.1016/j.omtn.2019.08.026


51.
Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, et al. Eph/Ephrin signaling in injury and inflammation. Am J Pathol 2012; 181(5): 1493–503. doi: 10.1016/j.ajpath.2012.06.043


52.
Feng G, Sun B, Liu HX, Liu QH, Zhao L, Wang TL. EphA2 antagonism alleviates LPS-induced acute lung injury via Nrf2/HO-1, TLR4/MyD88 and RhoA/ROCK pathways. Int Immunopharmacol 2019; 72: 176–85. doi: 10.1016/j.intimp.2019.04.008


53.
Tang S, Du X, Yuan L, Xiao G, Wu M, Wang L, et al. Airway epithelial ITGB4 deficiency in early life mediates pulmonary spontaneous inflammation and enhanced allergic immune response. J Cell Mol Med 2020; 24(5): 2761–71. doi: 10.1111/jcmm.15000


54.
Yuan L, Zhang X, Yang M, Du X, Wang L, Wu S, et al. Airway epithelial integrin β4 suppresses allergic inflammation by decreasing CCL17 production. Clin Sci (Lond) 2020; 134(13): 1735–49. doi: 10.1042/CS2019118


55.
Foltyn M, Luger AL, Lorenz NI, Sauer B, Mittelbronn M, Harter PN, et al. The physiological mTOR complex 1 inhibitor DDIT4 mediates therapy resistance in glioblastoma. Br J Cancer 2019; 120(5): 481–7. doi: 10.1038/s41416-018-0368-3


56.
Ding F, Gao F, Zhang S, Lv X, Chen Y, Liu Q. A review of the mechanism of DDIT4 serve as a mitochondrial related protein in tumor regulation. Sci Prog 2021; 104(1): 1–16. doi: 10.1177/0036850421997273
Published
2024-06-11
How to Cite
Wang X., Liu X., AGA E.-B., Tse W. M., Tse K. W. G., & Ye B. (2024). Protective effect of the total alkaloid extract from Bulbus <em>Fritillariae Pallidiflorae</em&gt; on cigarette smoke-induced Beas-2B cell injury model and transcriptomic analysis. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10689
Section
Original Articles