Circadian dysregulation disrupts gut microbe-related bile acid metabolism

  • Rulong Chen University of Chinese Academy of Sciences
  • Mengchen Ruan Wuhan Polytechnic University
  • Si Chen Wuhan Polytechnic University
  • Yu Tian Wuhan Polytechnic University
  • Hualin Wang Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
  • Na Li Wuhan Polytechnic University
  • Junlin Zhang Wuhan Polytechnic University
  • Xaoli Yu Wuhan Polytechnic University
  • Zhiguo Liu Wuhan Polytechnic University
Keywords: High-fat diet; circadian rhythm; bile acid; intestinal flora

Abstract

Background: Disturbance of circadian rhythm leads to abnormalities in bile acid (BA) and lipid metabolism, and it is of great significance to explore the relationship between them. This study explored the effects of circadian dysregulation on the rhythms of intestinal BA metabolism.

Method: Period circadian clock 1/period circadian clock 2 (Per1/Per2) double gene knockout (DKO) and wild-type (WT) male C57BL/6 mice were fed with a control or high-fat diet for 16 weeks. We measure plasma parameters of mice. Pathological changes including those in liver and intestine were detected by hematoxylin and eosin (H&E) and oil O staining. Western blot was used to detect the intestinal core rhythm protein clock circadian regulator (CLOCK), nuclear receptor subfamily 1, group D, member 1 (REV-ERBα), Farnesoid X receptor (FXR), Small heterodimer partner (SHP), and Fibroblast growth factor 15 (FGF15) expressions. We analyzed the bile acid and intestinal flora profile in the mice intestine tissues by BA-targeted metabolomics detection and high-throughput sequencing.

Results: Rhythmic chaos affected lipid metabolism and lipid accumulation in mice liver and intestine, and diurnal fluctuations of plasma triglycerides (TGs) were absent in normal-feeding DKO mice. The normal circadian fluctuations of the CLOCK and REV-ERBα observed in wild mice disappeared (normal diet) or were reversed (high-fat diet) in DKO mice. In WT mice intestine, total BA and conjugated BA were affected by circadian rhythm under both normal and high-fat diets, while these circadian fluctuations disappeared in DKO mice. Unconjugated BA seemed to be affected exclusively by diet (significantly increased in the high-fat group) without obvious fluctuations associated with circadian rhythm. Correlation analysis showed that the ratio of conjugated/unconjugated BA was positively correlated with the presence of Bacteroidetes and displayed a circadian rhythm. The expression levels of BA receptor pathway protein FXR, SHP, and FGF15 were affected by the ratio of conjugated/unconjugated BA.

Conclusion: Bacteroidetes-related diurnal changes to intestinal ratios of conjugated/unconjugated BA have the potential to regulate diurnal fluctuations in liver BA synthesis via FXR-FGF15. The inverted intestinal circadian rhythm observed in DKO mice fed with a high-fat diet may be an important reason for their abnormal circadian plasma TG rhythms and their susceptibility to lipid metabolism disorders.

 

Downloads

Download data is not yet available.

References


1.
Hastings MH, Smyllie NJ, Patton AP. Molecular-genetic manipulation of the suprachiasmatic nucleus circadian clock. J Mol Biol 2020. 432(12): 3639–3660. doi: 10.1016/j.jmb.2020.01.019


2.
Shi D, Chen J, Wang J, Yao J, Huang Y, Zhang G, et al. Circadian clock genes in the metabolism of non-alcoholic fatty liver disease. Front Physiol 2019; 10: 423. doi: 10.3389/fphys.2019.00423


3.
Figueroa AL, Figueiredo H, Rebuffat SA, Vieira E, Gomis R. Taurine treatment modulates circadian rhythms in mice fed a high fat diet. Sci Rep 2016; 6: 36801. doi: 10.1038/srep36801


4.
Koga Y, Tsurumaki H, Aoki-Saito H, Sato M, Yatomi M, Takehara K, et al. Roles of cyclic AMP response element binding activation in the ERK1/2 and p38 MAPK signalling pathway in central nervous system, cardiovascular system, osteoclast differentiation and mucin and cytokine production. Int J Mol Sci 2019; 20(6): 1346. doi: 10.3390/ijms20061346


5.
Lin R, Mo Y, Zha H, Qu Z, Xie P, Zhu ZJ, et al. CLOCK acetylates ASS1 to drive circadian rhythm of ureagenesis. Mol Cell 2017; 68: 198–209. doi: 10.1016/j.molcel.2017.09.008


6.
Eng G, Edison, Virshup DM. Site-specific phosphorylation of casein kinase 1 delta (CK1delta) regulates its activity towards the circadian regulator PER2. PLoS One 2017; 12: e177834. doi: 10.1371/journal.pone.0177834


7.
Brown AJ, Pendergast JS, Yamazaki S. Peripheral circadian oscillators. Yale J Biol Med 2019; 92: 327–35.


8.
Ikeda R, Tsuchiya Y, Koike N, Umemura Y, Inokawa H, Ono R, et al. REV-ERBalpha and REV-ERBbeta function as key factors regulating mammalian circadian output. Sci Rep 2019; 9: 10171. doi: 10.1038/s41598-019-46656-0


9.
Li Y, Ma J, Yao K, Su W, Tan B, Wu X, et al. Circadian rhythms and obesity: timekeeping governs lipid metabolism. J Pineal Res 2020; 69(3): e12682. doi: 10.1111/jpi.12682


10.
Chen R, Zuo Z, Li Q, Wang H, Li N, Zhang H, et al. DHA substitution overcomes high-fat diet-induced disturbance in the circadian rhythm of lipid metabolism. Food Funct 2020; 11: 3621–3631. doi: 10.1039/C9FO02606A


11.
Zhang L, Yan R, Wu Z. Metagenomics analysis of intestinal flora modulatory effect of green tea polyphenols by a circadian rhythm dysfunction mouse model. J Food Biochem 2020: 44(10): e13430. e13430. doi: 10.1111/jfbc.13430


12.
Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016; 165: 1332–45. doi: 10.1016/j.cell.2016.05.041


13.
Guan D, Xiong Y, Borck PC, Jang C, Doulias PT, Papazyan R, et al. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell 2018; 174: 831–42. doi: 10.1016/j.cell.2018.06.031


14.
Doden H, Sallam LA, Devendran S, Ly L, Doden G, Daniel SL, et al. Metabolism of oxo-bile acids and characterization of recombinant 12alpha-hydroxysteroid dehydrogenases from bile acid 7alpha-dehydroxylating human gut bacteria. Appl Environ Microbiol 2018; 84(10): e00235–18. doi: 10.1128/AEM.00235-18


15.
Rodriguez-Antonio I, Lopez-Sanchez GN, Garrido-Camacho VY, Uribe M, Chavez-Tapia NC, Nuno-Lambarri N. Cholecystectomy as a risk factor for non-alcoholic fatty liver disease development. HPB 2020; 22(11): 1513–1520. doi: 10.1016/j.hpb.2020.07.011


16.
Di Ciaula A, Garruti G, Lunardi BR, Molina-Molina E, Bonfrate L, Wang DQ, et al. Bile acid physiology. Ann Hepatol 2017; 16: s4–14. doi: 10.5604/01.3001.0010.5493


17.
Lee SM, Kim N, Yoon H, Kim YS, Choi SI, Park JH, et al. Compositional and functional changes in the gut microbiota in irritable bowel syndrome patients. Gut Liver 2021; 15(2): 253–261. doi: 10.5009/gnl19379


18.
Liu Y, Li Q, Wang H, Zhao X, Li N, Zhang H, et al. Fish oil alleviates circadian bile composition dysregulation in male mice with NAFLD. J Nutr Biochem 2019; 69: 53–62. doi: 10.1016/j.jnutbio.2019.03.005


19.
Gui L, Chen S, Wang H, Ruan M, Liu Y, Li N, et al. omega-3 PUFAs alleviate high-fat diet-induced circadian intestinal microbes dysbiosis. Mol Nutr Food Res 2019; 63: e1900492. doi: 10.1002/mnfr.201900492


20.
Qiang S, Tao L, Zhou J, Wang Q, Wang K, Lu M, et al. Knockout of farnesoid X receptor aggravates process of diabetic cardiomyopathy. Diabetes Res Clin Pract 2020; 161: 108033. doi: 10.1016/j.diabres.2020.108033


21.
Byun S, Jung H, Chen J, Kim YC, Kim DH, Kong B, et al. Phosphorylation of hepatic farnesoid X receptor by FGF19 signaling-activated Src maintains cholesterol levels and protects from atherosclerosis. J Biol Chem 2019; 294: 8732–44. doi: 10.1074/jbc.RA119.008360


22.
Schumacher JD, Guo GL. Pharmacologic modulation of bile acid-FXR-FGF15/FGF19 pathway for the treatment of nonalcoholic steatohepatitis. Handb Exp Pharmacol 2019; 256: 325–57. doi: 10.1007/164_2019_228


23.
Nohara K, Nemkov T, D’Alessandro A, Yoo SH, Chen Z. Coordinate regulation of cholesterol and bile acid metabolism by the clock modifier nobiletin in metabolically challenged old mice. Int J Mol Sci 2019; 20(17): 4281. doi: 10.3390/ijms20174281


24.
Li WK, Li H, Lu YF, Li YY, Fu ZD, Liu J. Atorvastatin alters the expression of genes related to bile acid metabolism and circadian clock in livers of mice. PeerJ 2017; 5: e3348. doi: 10.7717/peerj.3348


25.
Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Invest 2019; 129: 4050–7. doi: 10.1172/JCI129194


26.
Ma K, Xiao R, Tseng HT, Shan L, Fu L, Moore DD. Circadian dysregulation disrupts bile acid homeostasis. PLoS One 2009; 4: e6843. doi: 10.1371/journal.pone.0006843


27.
Zheng UB, Albrecht K, Kaasik M, Sage W, Lu S, Vaishnav Q, et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 2001; 105(5): 683–94. doi: 10.1016/S0092-8674(01)00380-4


28.
Xu L, Wu T, Li H, Ni Y, Fu Z. An individual 12-h shift of the light-dark cycle alters the pancreatic and duodenal circadian rhythm and digestive function. Acta Biochim Biophys Sinica 2017; 49(10): 954–61. doi: 10.1093/abbs/gmx084


29.
Voigt RM, Forsyth CB, Keshavarzian A. Circadian rhythms: a regulator of gastrointestinal health and dysfunction. Expert Rev Gastroenterol Hepatol 2019; 13: 411–24. doi: 10.1080/17474124.2019.1595588


30.
Duboc H, Coffin B, Siproudhis L. Disruption of circadian rhythms and gut motility: an overview of underlying mechanisms and associated pathologies. J Clin Gastroenterol 2020; 54: 405–14. doi: 10.1097/MCG.0000000000001333


31.
Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev 2017; 38: 3–45. doi: 10.1210/er.2015-1080


32.
Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gerard P, et al. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 2019; 60: 323–32. doi: 10.1194/jlr.R088989


33.
van Zutphen T, Stroeve J, Yang J, Bloks VW, Jurdzinski A, Roelofsen H, et al. FXR overexpression alters adipose tissue architecture in mice and limits its storage capacity leading to metabolic derangements. J Lipid Res 2019; 60(9): 1547–1561. doi: 10.1194/jlr.M094508


34.
Ovadia AC, Perdones-Montero K, Spagou A, Smith MH, Sarafian M, Gomez-Romero E, et al. Enhanced microbial bile acid deconjugation and impaired ileal uptake in pregnancy repress intestinal regulation of bile acid synthesis. Hepatology 2019; 70(1): 276–93. doi: 10.1002/hep.30661


35.
Zhu Y, Zhang JY, Wei YL, Hao JY, Lei YQ, Zhao WB, et al. The polyphenol-rich extract from chokeberry (Aronia melanocarpa L.) modulates gut microbiota and improves lipid metabolism in diet-induced obese rats. Nutr Metab (Lond) 2020; 17: 54. doi: 10.1186/s12986-020-00473-9


36.
Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016; 7: 22–39. doi: 10.1080/19490976.2015.1127483


37.
Copple BL, Li T. Pharmacology of bile acid receptors: evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res 2016; 104: 9–21. doi: 10.1016/j.phrs.2015.12.007


38.
Li T, Chiang J. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg Nutr 2020; 9: 152–69. doi: 10.21037/hbsn.2019.09.03


39.
Kumari A, Pal PD, Asthana S. Bile acids mediated potential functional interaction between FXR and FATP5 in the regulation of Lipid Metabolism. Int J Biol Sci 2020; 16(13): 2308–22. doi: 10.7150/ijbs.44774


40.
Li L, Zhao H, Chen B, Fan Z, Li N, Yue J, et al. FXR activation alleviates tacrolimus-induced post-transplant diabetes mellitus by regulating renal gluconeogenesis and glucose uptake. J Transl Med 2019; 17: 418. doi: 10.1186/s12967-019-02170-5


41.
Matsubara T, Li F, Gonzalez FJ. FXR signaling in the enterohepatic system. Mol Cell Endocrinol 2013; 368: 17–29. doi: 10.1016/j.mce.2012.05.004


42.
Li C, Zhang XL, Xue YX, Cheng DJ, Yan JT, Wu S, et al. [Protective effect and regulating effect on FXR/SHP gene of electroacupuncture preconditioning on myocardial ischemia-reperfusion injury in rats]. Zhongguo Zhen Jiu 2019; 39: 861–6.


43.
Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 2018; 68: 1574–88. doi: 10.1002/hep.29857


44.
Parasram K, Bernardon N, Hammoud M, Chang H, He L, Perrimon N, et al. Intestinal stem cells exhibit conditional circadian clock function. Stem Cell Reports 2018; 11: 1287–301. doi: 10.1016/j.stemcr.2018.10.010


45.
Hong F, Pan S, Xu P, Xue T, Wang J, Guo Y, et al. Melatonin orchestrates lipid homeostasis through the hepatointestinal circadian clock and microbiota during constant light exposure. Cells 2020; 9(2): 489. doi: 10.3390/cells9020489


46.
Haspel JA, Anafi R, Brown MK, Cermakian N, Depner C, Desplats P, et al. Perfect timing: circadian rhythms, sleep, and immunity – an NIH workshop summary. JCI Insight 2020; 5(1): e131487. doi: 10.1172/jci.insight.131487
Published
2022-08-19
How to Cite
Chen R., Ruan M., Chen S., Tian Y., Wang H., Li N., Zhang J., Yu X., & Liu Z. (2022). Circadian dysregulation disrupts gut microbe-related bile acid metabolism. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.7653
Section
Original Articles