In vitro anti-hepatocellular carcinogenesis of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose

  • Yu-han Jiang School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Jing-hui Bi School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Min-rui Wu School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Shi-jie Ye School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Lei Hu School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Long-jie Li School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Yang Yi School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
  • Hong-xun Wang School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Li-mei Wang School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
Keywords: 1,2,3,4,6-Penta-O-galloyl-β-D-glucose, apoptosis, hepatocellular carcinoma, network pharmacology, p53 signaling pathway

Abstract

Background: 1,2,3,4,6-Penta-O-galloyl-β-D-glucose (β-PGG) is a polyphenol ellagic compound with a variety of pharmacological effects and has an inhibitory effect on lots of cancers.

Objective: To explore the antitumor effects and mechanism of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose on human hepatocellular carcinoma HepG2 cells.

Design: A network pharmacology method was first used to predict the possible inhibition of hepatocellular carcinoma growth by 1,2,3,4,6-Penta-O-galloyl-β-D-glucose (β-PGG) through the p53 signaling pathway. Next, the Cell Counting Kit (CCK-8) assay was performed to evaluate changes in the survival rate of human hepatocellular carcinoma HepG2 cells treated with different concentrations of the drug; flow cytometry was used to detect changes in cell cycle, apoptosis, mitochondrial membrane potential (MMP) and intracellular Ca2+ concentration; real-time fluorescence quantification and immunoblotting showed that the expression of P53 genes and proteins associated with the p53 signaling pathway was significantly increased by β-PGG treatment.

Reasult: It was found that β-PGG significantly inhibited survival of HepG2 cells, promoted apoptosis, decreased MMP and intracellular Ca2+ concentration, upregulated P53 gene and protein expression, increased CASP3 expression, and induced apoptosis in HepG2 cells.

Conclusion: This study has shown that network pharmacology can accurately predict the target of β-PGG’s anti-hepatocellular carcinoma action. Moreover, it was evident that β-PGG can induce apoptosis in HepG2 cells by activating the p53 signaling pathway to achieve its anti-hepatocellular carcinoma effect in vitro.

Downloads

Download data is not yet available.

References


1.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin 2021; 71(3): 209–49. doi: 10.3322/caac.21660


2.
Lv GS, Chen L, Wang HY. Research progress and prospect of liver cancer in China. Sheng Ming Ke Xue (in Chinese) 2015; 27: 237–48.


3.
Yang W-S, Zeng X-F, Liu Z-N, Zhao Q-H, Tan Y-T, Gao J, et al. Diet and liver cancer risk: a narrative review of epidemiological evidence. Br J Nutr 2020; 124(3): 330–40. doi: 10.1017/S0007114520001208


4.
Mayne ST, Playdon MC, Rock CL. Diet, nutrition, and cancer: past, present and future. Nat Rev Clin Oncol 2016; 13(8): 504–15. doi: 10.1038/nrclinonc.2016.24


5.
Di Furia L, Rusciano MR, Leonardini L, Rossi P, Giammarchi C, Vittori E, et al. A nutritional approach to the prevention of cancer: from assessment to personalized intervention. Transl Med UniSa 2015; 13: 33.


6.
Tueros I, Uriarte M. Innovative food products for cancer patients: future directions. J Sci Food Agric 2018; 98(5): 1647–52. doi: 10.1002/jsfa.8789


7.
Sharma A, Kaur M, Katnoria JK, Nagpal AK. Polyphenols in food: cancer prevention and apoptosis induction. Curr Med Chem 2018; 25(36): 4740–57. doi: 10.2174/0929867324666171006144208


8.
Yang M, Memon KH, Lateef M, Na D, Wan S, Eric D, et al. 1, 2, 3, 4, 6-Pentakis [-O-(3, 4, 5-Trihydroxybenzoyl)]-α, β-D-Glucopyranose (PGG) analogs: design, synthesis, anti-tumor and anti-oxidant activities. Carbohydr Res 2016; 430: 72–81. doi: 10.1016/j.carbpol.2015.08.058


9.
Jin F, Ma K, Chen M, Zou M, Wu Y, Li F, et al. Pentagalloylglucose blocks the nuclear transport and nucleocapsid egress process to inhibit Hsv-1 infection. Jpn J Infect Dis 2016; 69(2): 135–42. doi: 10.7883/yoken.JJID.2015.137


10.
Kiss AK, Filipek A, Żyżyńska-Granica B, Naruszewicz M. Effects of penta-O-galloyl-β-D-glucose on human neutrophil function: significant down-regulation of L-selectin expression. Phytother Res 2013; 27(7): 986–92. doi: 10.1002/ptr.4822


11.
Zhao Y, Wang B, Zhang S, Yang S, Wang H, Ren A, et al. Isolation of antifungal compound from paeonia suffruticosa and its antifungal mechanism. Chin J Integr Med 2015; 21(3): 211–16. doi: 10.1007/s11655-014-1805-7


12.
Bruno E, Pereira C, Roman KP, Takiguchi M, Kao P-Y, Nogaj LA, et al. IAPP aggregation and cellular toxicity are inhibited by 1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose. Amyloid 2013; 20(1): 34–8. doi: 10.3109/13506129.2012.762761


13.
Hu H, Lee H-J, Jiang C, Zhang J, Wang L, Zhao Y, et al. Penta-1, 2, 3, 4, 6-O-galloyl-β-d-glucose induces P53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol Cancer Ther 2008; 7(9): 2681–91. doi: 10.1158/1535-7163.MCT-08-0456


14.
Xiang Q, Tang J, Luo Q, Xue J, Tao Y, Jiang H, et al. In vitro study of anti-ER positive breast cancer effect and mechanism of 1, 2, 3, 4-6-pentyl-O-galloyl-beta-D-glucose (PGG). Biomed Pharmacother 2019; 111: 813–20. doi: 10.1016/j.biopha.2018.12.062


15.
Holtz JN, Silverman RK, Tay KJ, Browning JT, Huang J, Polascik TJ, et al. New prostate cancer prognostic grade group (PGG): can multiparametric MRI (MpMRI) accurately separate patients with low-, intermediate-, and high-grade cancer? Abdom Radiol 2018; 43(3): 702–12. doi: 10.1007/s00261-017-1255-8


16.
Yang J, Wang F, Chen X, Qiu S, Cui L, Hu L. β-Pentagalloyl-glucose sabotages pancreatic cancer cells and ameliorates cachexia in tumor-bearing mice. Am J Chin Med 2019; 47(3): 675–89. doi: 10.1142/S0192415X19500356


17.
Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008; 4(11): 682–90. doi: 10.1038/nchembio.118


18.
Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8(4): 1–7. doi: 10.1186/1752-0509-8-S4-S11


19.
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2021; 2(3): 100141. doi: 10.1016/j.xinn.2021.100141


20.
Yu G. Enrichplot: Visualization of functional enrichment result. R package version 1.10. 2[J]. Molecular Therapy: Nucleic Acids, 2021.


21.
Mailund TR. Data science quick reference, Mailund TR. Data science quick reference. Aarhus, Denmark: Springer; 2019.


22.
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor P53: implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020; 33: 2–22. doi: 10.1016/j.molmet.2019.10.002


23.
Liang Y, Yan C, Schor NF. Apoptosis in the absence of caspase 3. Oncogene 2001; 20(45): 6570–8. doi: 10.1038/sj.onc.1204815


24.
Li N, Fan L-L, Sun G-P, Wan X-A, Wang Z-G, Wu Q, et al. Paeonol inhibits tumor growth in gastric cancer in vitro and in vivo. World J Gastroenterol 2010; 16(35): 4483. doi: 10.3748/wjg.v16.i35.4483


25.
Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (∆ψm) in apoptosis: an update. Apoptosis 2003; 8(2): 115–28. doi: 10.1023/A:1022945107762


26.
Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, et al. Mitochondrial Ca2+ and apoptosis. Cell Calcium 2012; 52(1): 36–43. doi: 10.1016/j.ceca.2012.02.008


27.
Enomoto H. Unique distribution of ellagitannins in ripe strawberry fruit revealed by mass spectrometry imaging. Curr Res Food Sci. 2021; 4: 821–8. doi:10.1016/j.crfs.2021.11.006


28.
Watrelot AA, Le Guernevé C, Hallé H, Meudec E, Véran F, Williams P, et al. Multimethod approach for extensive characterization of gallnut tannin extracts. J Agric Food Chem 2020; 68(47): 13426–38. doi: 10.1021/acs.jafc.9b08221


29.
Falcão L, Araújo ME. Vegetable tannins used in the manufacture of historic leathers. Molecules 2018; 23(5): 1081. doi: 10.3390/molecules23051081


30.
Baldwin A, Booth BW. Biomedical applications of tannic acid. J Biomater Appl 2022; 36(8): 1503–23. doi: 10.1177/08853282211058099


31.
Nagesh PKB, Chowdhury P, Hatami E, Jain S, Dan N, Kashyap VK, et al. Tannic acid inhibits lipid metabolism and induce ROS in prostate cancer cells. Sci Rep 2020; 10(1): 980. doi: 10.1038/s41598-020-57932-9


32.
Dong Y, Yin S, Jiang C, Luo X, Guo X, Zhao C, et al. Involvement of autophagy induction in penta-1, 2, 3, 4, 6-O-galloyl-β-D-glucose-induced senescence-like growth arrest in human cancer cells. Autophagy 2014; 10(2): 296–310. doi: 10.4161/auto.27210


33.
Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep 2015; 32(8): 1249–66. doi: 10.1039/C5NP00005J


34.
Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010; 2(1): a001008. doi: 10.1101/cshperspect.a001008


35.
Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2010; 2(3): a001016. doi: 10.1101/cshperspect.a001016


36.
Stegh AH. Targeting the P53 signaling pathway in cancer therapy–the promises, challenges and perils. Expert Opin Ther Targets 2012; 16(1): 67–83. doi: 10.1517/14728222.2011.643299


37.
Choi W-I, Kim M-Y, Jeon B-N, Koh D-I, Yun C-O, Li Y, et al. Role of promyelocytic leukemia zinc finger (PLZF) in cell proliferation and cyclin-dependent kinase inhibitor 1A (P21WAF/CDKN1A) gene repression. J Biol Chem 2014; 289(27): 18625–40. doi: 10.1074/jbc.M113.538751


38.
Karimian A, Ahmadi Y, Yousefi B. Multiple functions of P21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 2016; 42: 63–71. doi: 10.1016/j.dnarep.2016.04.008


39.
Jiang Y, Bi J-H, Wu M-R, Ye S-J, Yi Y, Wang H-X, et al. In vitro anti-hepatocellular carcinogenesis of 1,2,3,4,6-penta-O-galloyl-β-D-glucose. 2022, PREPRINT (Version 1) available at Research Square. doi: 10.21203/rs.3.rs-1645156/v1
Published
2023-03-27
How to Cite
Jiang Y.- han, Bi J.- hui, Wu M.- rui, Ye S.- jie, Hu L., Li L.- jie, Yi Y., Wang H.- xun, & Wang L.- mei. (2023). <em>In vitro</em&gt; anti-hepatocellular carcinogenesis of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.9244
Section
Original Articles