In vitro anti-hepatocellular carcinogenesis of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose

  • Yu-han Jiang School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Jing-hui Bi School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Min-rui Wu School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Shi-jie Ye School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Lei Hu School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Long-jie Li School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Yang Yi School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
  • Hong-xun Wang School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
  • Li-mei Wang School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
Keywords: 1,2,3,4,6-Penta-O-galloyl-β-D-glucose, apoptosis, hepatocellular carcinoma, network pharmacology, p53 signaling pathway


Background: 1,2,3,4,6-Penta-O-galloyl-β-D-glucose (β-PGG) is a polyphenol ellagic compound with a variety of pharmacological effects and has an inhibitory effect on lots of cancers.

Objective: To explore the antitumor effects and mechanism of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose on human hepatocellular carcinoma HepG2 cells.

Design: A network pharmacology method was first used to predict the possible inhibition of hepatocellular carcinoma growth by 1,2,3,4,6-Penta-O-galloyl-β-D-glucose (β-PGG) through the p53 signaling pathway. Next, the Cell Counting Kit (CCK-8) assay was performed to evaluate changes in the survival rate of human hepatocellular carcinoma HepG2 cells treated with different concentrations of the drug; flow cytometry was used to detect changes in cell cycle, apoptosis, mitochondrial membrane potential (MMP) and intracellular Ca2+ concentration; real-time fluorescence quantification and immunoblotting showed that the expression of P53 genes and proteins associated with the p53 signaling pathway was significantly increased by β-PGG treatment.

Reasult: It was found that β-PGG significantly inhibited survival of HepG2 cells, promoted apoptosis, decreased MMP and intracellular Ca2+ concentration, upregulated P53 gene and protein expression, increased CASP3 expression, and induced apoptosis in HepG2 cells.

Conclusion: This study has shown that network pharmacology can accurately predict the target of β-PGG’s anti-hepatocellular carcinoma action. Moreover, it was evident that β-PGG can induce apoptosis in HepG2 cells by activating the p53 signaling pathway to achieve its anti-hepatocellular carcinoma effect in vitro.


Download data is not yet available.


Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin 2021; 71(3): 209–49. doi: 10.3322/caac.21660

Lv GS, Chen L, Wang HY. Research progress and prospect of liver cancer in China. Sheng Ming Ke Xue (in Chinese) 2015; 27: 237–48.

Yang W-S, Zeng X-F, Liu Z-N, Zhao Q-H, Tan Y-T, Gao J, et al. Diet and liver cancer risk: a narrative review of epidemiological evidence. Br J Nutr 2020; 124(3): 330–40. doi: 10.1017/S0007114520001208

Mayne ST, Playdon MC, Rock CL. Diet, nutrition, and cancer: past, present and future. Nat Rev Clin Oncol 2016; 13(8): 504–15. doi: 10.1038/nrclinonc.2016.24

Di Furia L, Rusciano MR, Leonardini L, Rossi P, Giammarchi C, Vittori E, et al. A nutritional approach to the prevention of cancer: from assessment to personalized intervention. Transl Med UniSa 2015; 13: 33.

Tueros I, Uriarte M. Innovative food products for cancer patients: future directions. J Sci Food Agric 2018; 98(5): 1647–52. doi: 10.1002/jsfa.8789

Sharma A, Kaur M, Katnoria JK, Nagpal AK. Polyphenols in food: cancer prevention and apoptosis induction. Curr Med Chem 2018; 25(36): 4740–57. doi: 10.2174/0929867324666171006144208

Yang M, Memon KH, Lateef M, Na D, Wan S, Eric D, et al. 1, 2, 3, 4, 6-Pentakis [-O-(3, 4, 5-Trihydroxybenzoyl)]-α, β-D-Glucopyranose (PGG) analogs: design, synthesis, anti-tumor and anti-oxidant activities. Carbohydr Res 2016; 430: 72–81. doi: 10.1016/j.carbpol.2015.08.058

Jin F, Ma K, Chen M, Zou M, Wu Y, Li F, et al. Pentagalloylglucose blocks the nuclear transport and nucleocapsid egress process to inhibit Hsv-1 infection. Jpn J Infect Dis 2016; 69(2): 135–42. doi: 10.7883/yoken.JJID.2015.137

Kiss AK, Filipek A, Żyżyńska-Granica B, Naruszewicz M. Effects of penta-O-galloyl-β-D-glucose on human neutrophil function: significant down-regulation of L-selectin expression. Phytother Res 2013; 27(7): 986–92. doi: 10.1002/ptr.4822

Zhao Y, Wang B, Zhang S, Yang S, Wang H, Ren A, et al. Isolation of antifungal compound from paeonia suffruticosa and its antifungal mechanism. Chin J Integr Med 2015; 21(3): 211–16. doi: 10.1007/s11655-014-1805-7

Bruno E, Pereira C, Roman KP, Takiguchi M, Kao P-Y, Nogaj LA, et al. IAPP aggregation and cellular toxicity are inhibited by 1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucose. Amyloid 2013; 20(1): 34–8. doi: 10.3109/13506129.2012.762761

Hu H, Lee H-J, Jiang C, Zhang J, Wang L, Zhao Y, et al. Penta-1, 2, 3, 4, 6-O-galloyl-β-d-glucose induces P53 and inhibits STAT3 in prostate cancer cells in vitro and suppresses prostate xenograft tumor growth in vivo. Mol Cancer Ther 2008; 7(9): 2681–91. doi: 10.1158/1535-7163.MCT-08-0456

Xiang Q, Tang J, Luo Q, Xue J, Tao Y, Jiang H, et al. In vitro study of anti-ER positive breast cancer effect and mechanism of 1, 2, 3, 4-6-pentyl-O-galloyl-beta-D-glucose (PGG). Biomed Pharmacother 2019; 111: 813–20. doi: 10.1016/j.biopha.2018.12.062

Holtz JN, Silverman RK, Tay KJ, Browning JT, Huang J, Polascik TJ, et al. New prostate cancer prognostic grade group (PGG): can multiparametric MRI (MpMRI) accurately separate patients with low-, intermediate-, and high-grade cancer? Abdom Radiol 2018; 43(3): 702–12. doi: 10.1007/s00261-017-1255-8

Yang J, Wang F, Chen X, Qiu S, Cui L, Hu L. β-Pentagalloyl-glucose sabotages pancreatic cancer cells and ameliorates cachexia in tumor-bearing mice. Am J Chin Med 2019; 47(3): 675–89. doi: 10.1142/S0192415X19500356

Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 2008; 4(11): 682–90. doi: 10.1038/nchembio.118

Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8(4): 1–7. doi: 10.1186/1752-0509-8-S4-S11

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2021; 2(3): 100141. doi: 10.1016/j.xinn.2021.100141

Yu G. Enrichplot: Visualization of functional enrichment result. R package version 1.10. 2[J]. Molecular Therapy: Nucleic Acids, 2021.

Mailund TR. Data science quick reference, Mailund TR. Data science quick reference. Aarhus, Denmark: Springer; 2019.

Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor P53: implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020; 33: 2–22. doi: 10.1016/j.molmet.2019.10.002

Liang Y, Yan C, Schor NF. Apoptosis in the absence of caspase 3. Oncogene 2001; 20(45): 6570–8. doi: 10.1038/sj.onc.1204815

Li N, Fan L-L, Sun G-P, Wan X-A, Wang Z-G, Wu Q, et al. Paeonol inhibits tumor growth in gastric cancer in vitro and in vivo. World J Gastroenterol 2010; 16(35): 4483. doi: 10.3748/wjg.v16.i35.4483

Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (∆ψm) in apoptosis: an update. Apoptosis 2003; 8(2): 115–28. doi: 10.1023/A:1022945107762

Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, et al. Mitochondrial Ca2+ and apoptosis. Cell Calcium 2012; 52(1): 36–43. doi: 10.1016/j.ceca.2012.02.008

Enomoto H. Unique distribution of ellagitannins in ripe strawberry fruit revealed by mass spectrometry imaging. Curr Res Food Sci. 2021; 4: 821–8. doi:10.1016/j.crfs.2021.11.006

Watrelot AA, Le Guernevé C, Hallé H, Meudec E, Véran F, Williams P, et al. Multimethod approach for extensive characterization of gallnut tannin extracts. J Agric Food Chem 2020; 68(47): 13426–38. doi: 10.1021/acs.jafc.9b08221

Falcão L, Araújo ME. Vegetable tannins used in the manufacture of historic leathers. Molecules 2018; 23(5): 1081. doi: 10.3390/molecules23051081

Baldwin A, Booth BW. Biomedical applications of tannic acid. J Biomater Appl 2022; 36(8): 1503–23. doi: 10.1177/08853282211058099

Nagesh PKB, Chowdhury P, Hatami E, Jain S, Dan N, Kashyap VK, et al. Tannic acid inhibits lipid metabolism and induce ROS in prostate cancer cells. Sci Rep 2020; 10(1): 980. doi: 10.1038/s41598-020-57932-9

Dong Y, Yin S, Jiang C, Luo X, Guo X, Zhao C, et al. Involvement of autophagy induction in penta-1, 2, 3, 4, 6-O-galloyl-β-D-glucose-induced senescence-like growth arrest in human cancer cells. Autophagy 2014; 10(2): 296–310. doi: 10.4161/auto.27210

Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep 2015; 32(8): 1249–66. doi: 10.1039/C5NP00005J

Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2010; 2(1): a001008. doi: 10.1101/cshperspect.a001008

Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2010; 2(3): a001016. doi: 10.1101/cshperspect.a001016

Stegh AH. Targeting the P53 signaling pathway in cancer therapy–the promises, challenges and perils. Expert Opin Ther Targets 2012; 16(1): 67–83. doi: 10.1517/14728222.2011.643299

Choi W-I, Kim M-Y, Jeon B-N, Koh D-I, Yun C-O, Li Y, et al. Role of promyelocytic leukemia zinc finger (PLZF) in cell proliferation and cyclin-dependent kinase inhibitor 1A (P21WAF/CDKN1A) gene repression. J Biol Chem 2014; 289(27): 18625–40. doi: 10.1074/jbc.M113.538751

Karimian A, Ahmadi Y, Yousefi B. Multiple functions of P21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 2016; 42: 63–71. doi: 10.1016/j.dnarep.2016.04.008

Jiang Y, Bi J-H, Wu M-R, Ye S-J, Yi Y, Wang H-X, et al. In vitro anti-hepatocellular carcinogenesis of 1,2,3,4,6-penta-O-galloyl-β-D-glucose. 2022, PREPRINT (Version 1) available at Research Square. doi: 10.21203/
How to Cite
Jiang Y.- han, Bi J.- hui, Wu M.- rui, Ye S.- jie, Hu L., Li L.- jie, Yi Y., Wang H.- xun, & Wang L.- mei. (2023). <em>In vitro</em&gt; anti-hepatocellular carcinogenesis of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose. Food & Nutrition Research, 67.
Original Articles