Kaempferia parviflora rhizome extract exerts anti-obesity effect in high-fat diet-induced obese C57BL/6N mice

  • Hyun Sook Lee Department of Food Science & Nutrition, Dongseo University, Busan, Korea
  • Young Eun Jeon Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon, Korea
  • Riyo Awa Research Center, Maruzen Pharmaceuticals Co. Ltd., Hiroshima, Japan
  • Susumu Yoshino Research Center, Maruzen Pharmaceuticals Co. Ltd., Hiroshima, Japan
  • Eun Ji Kim Hallym University
Keywords: Kaempferia parviflora, Anti-obesity, Adipogenic transcription factors, Adipokines, C57BL/6N mice


Kaempferia parviflora (KP) rhizome, also called black ginger, has been used as a herbal medicine for many centuries. This current study was aimed at exploring whether KP rhizome extract (KPE) had anti-obesity effects and the mechanism involved. Five-week-old C57BL/6N male mice were allocated into five groups for 8-week feeding with control diet (CD), high-fat diet (HFD), HFD + 150 mg/kg body weight (BW)/day KPE (HFD+K150), HFD + 300 mg/kg BW/day KPE (HFD+K300), and HFD + 600 mg/kg BW/day KPE (HFD+K600). KPE decreased BW, body fat mass, adipose tissue weight, adipocyte size, and serum levels of glucose, triglycerides, cholesterol, insulin, and leptin in HFD-induced obese C57BL/6N mice. KPE inhibited adipogenesis by decreasing CCAAT/enhancer binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase 1, ATP-citrate lyase, and fatty acid synthase mRNA expression. KPE improved lipolysis by increasing carnitine palmitoyl transferase 1 and hormone-sensitive lipase mRNA expression. These results suggest that KPE may have inhibited HFD-induced obesity by regulating several pathways involved in decreasing adipogenesis and enhancing lipolysis. Thus, the results suggest that KPE (or KP) may be applicable as an anti-obesity agent.


Download data is not yet available.


Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365(9468): 1415–28. doi: 10.1016/s0140-6736(05)66378-7

Hsu IR, Kim SP, Kabir M, Bergman RN. Metabolic syndrome, hyperinsulinemia, and cancer. Am J Clin Nutr 2007; 86(3): s867–71. doi: 10.1093/ajcn/86.3.867S

Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell 2001; 104(4): 531–43. doi: 10.1016/s0092-8674(01)00240-9

Zielinska-Blizniewska H, Sitarek P, Merecz-Sadowska A, Malinowska K, Zajdel K, Jablonska M, et al. Plant extracts and reactive oxygen species as two counteracting agents with anti- and pro-obesity properties. Int J Mol Sci 2019; 20(18): 4556. doi: 10.3390/ijms20184556

Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 2013; 10(5): 210–29. doi: 10.4314/ajtcam.v10i5.2

Sae-wong C, Tansakul P, Tewtrakul S. Anti-inflammatory mechanism of Kaempferia parviflora in murine macrophage cells (RAW 264.7) and in experimental animals. J Ethnopharmacol 2009; 124(3): 576–80. doi: 10.1016/j.jep.2009.04.059

Horigome S, Yoshida I, Ito S, Inohana S, Fushimi K, Nagai T, et al. Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells. Eur J Nutr 2017; 56(3): 949–64. doi: 10.1007/s00394-015-1141-5

Rujjanawate C, Kanjanapothi D, Amornlerdpison D, Pojanagaroon S. Anti-gastric ulcer effect of Kaempferia parviflora. J Ethnopharmacol 2005; 102(1): 120–2. doi: 10.1016/j.jep.2005.03.035

Ninomiya K, Matsumoto T, Chaipech S, Miyake S, Katsuyama Y, Tsuboyama A, et al. Simultaneous quantitative analysis of 12 methoxyflavones with melanogenesis inhibitory activity from the rhizomes of Kaempferia parviflora. J Nat Med 2016; 70(2): 179–89. doi: 10.1007/s11418-015-0955-z

Yorsin S, Kanokwiroon K, Radenahmad N, Jansakul C. Effects of Kaempferia parviflora rhizomes dichloromethane extract on vascular functions in middle-aged male rat. J Ethnopharmacol 2014; 156: 162–74. doi: 10.1016/j.jep.2014.08.020

Miyazaki M, Izumo N, Yoshikawa K, Matsugami T, Miyadate Y, Hayamizu K, et al. The anti-obesity effect of Kaempferia Parviflora (KP) is attributed to leptin in adipose tissue. J Nutr Health Food Sci 2019; 7(2): 1–9. doi: 10.15226/jnhfs.2019.001158

Yoshino S, Awa R, Miyake Y, Fukuhara I, Sato H, Ashino T, et al. Daily intake of Kaempferia parviflora extract decreases abdominal fat in overweight and preobese subjects: a randomized, double-blind, placebo-controlled clinical study. Diabetes Metab Syndr Obes 2018; 11: 447–58. doi: 10.2147/dmso.S169925

Ongchai S, Chiranthanut N, Tangyuenyong S, Viriyakhasem N, Kongdang P. Kaempferia parviflora extract alleviated rat arthritis, exerted chondroprotective properties in vitro, and reduced expression of genes associated with inflammatory arthritis. Molecules 2021; 26(6): 1527. doi: 10.3390/molecules26061527

Tonsomboon A, Prasanth MI, Plaingam W, Tencomnao T. Kaempferia parviflora rhizome extract inhibits glutamate-induced toxicity in HT-22 mouse hippocampal neuronal cells and extends longevity in Caenorhabditis elegans. Biology (Basel) 2021; 10(4): 264. doi: 10.3390/biology10040264

Sripanidkulchai B, Somintara S, Pariwatthanakun C, Sripanidkulchai K, Leardkamolkarn V. Antidiabetic activity of methoxyflavone-enriched extract of Kaempferia parviflora in streptozotocin-induced diabetic rats. Songklanakarin J Sci Technol 2020; 42(6): 1239–47.

Ono S, Yoshida N, Maekawa D, Kitakaze T, Kobayashi Y, Kitano T, et al. 5-Hydroxy-7-methoxyflavone derivatives from Kaempferia parviflora induce skeletal muscle hypertrophy. Food Sci Nutr 2019; 7(1): 312–21. doi: 10.1002/fsn3.891

Huang J, Tagawa T, Ma S, Suzuki K. Black ginger (Kaempferia parviflora) extract enhances endurance capacity by improving energy metabolism and substrate utilization in mice. Nutrients 2022; 14(18): 3845. doi: 10.3390/nu14183845

Yee TT, Lwin KWY. Study of phytochemical composition on Kaempferia parviflora Wall. ex Baker. IEEE-SEM 2019; 7(7): 128–36.

Chen D, Li H, Li W, Feng S, Deng D. Kaempferia parviflora and its methoxyflavones: chemistry and biological activities. Evid Based Complement Alternat Med 2018; 2018: 4057456. doi: 10.1155/2018/4057456

Ochiai M, Takeuchi T, Nozaki T, Ishihara KO, Matsuo T. Kaempferia parviflora ethanol extract, a peroxisome proliferator-activated receptor γ ligand-binding agonist, improves glucose tolerance and suppresses fat accumulation in diabetic NSY mice. J Food Sci 2019; 84(2): 339–48. doi: 10.1111/1750-3841.14437

Sae-Wong C, Matsuda H, Tewtrakul S, Tansakul P, Nakamura S, Nomura Y, et al. Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. J Ethnopharmacol 2011; 136(3): 488–95. doi: 10.1016/j.jep.2011.01.013

Kobayashi H, Horiguchi-Babamoto E, Suzuki M, Makihara H, Tomozawa H, Tsubata M, et al. Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue. J Nat Med 2016; 70(1): 54–61. doi: 10.1007/s11418-015-0936-2

Akase T, Shimada T, Terabayashi S, Ikeya Y, Sanada H, Aburada M. Antiobesity effects of Kaempferia parviflora in spontaneously obese type II diabetic mice. J Nat Med 2011; 65(1): 73–80. doi: 10.1007/s11418-010-0461-2

Shimada T, Horikawa T, Ikeya Y, Matsuo H, Kinoshita K, Taguchi T, et al. Preventive effect of Kaempferia parviflora ethyl acetate extract and its major components polymethoxyflavonoid on metabolic diseases. Fitoterapia 2011; 82(8): 1272–8. doi: 10.1016/j.fitote.2011.08.018

Promson N, Puntheeranurak S. Kaempferia parviflora Extract diminishes hyperglycemia and visceral fat accumulation in mice fed with high fat and high sucrose diet. J Physiol Biomed Sci 2014; 27(1): 13–9.

Matsushita M, Yoneshiro T, Aita S, Kamiya T, Kusaba N, Yamaguchi K, et al. Kaempferia parviflora extract increases whole-body energy expenditure in humans: roles of brown adipose tissue. J Nutr Sci Vitaminol (Tokyo) 2015; 61(1): 79–83. doi: 10.3177/jnsv.61.79

Yoshino S, Tagawa T, Awa R, Ogasawara J, Kuwahara H, Fukuhara I. Polymethoxyflavone purified from Kaempferia parviflora reduces visceral fat in Japanese overweight individuals: a randomised, double-blind, placebo-controlled study. Food Funct 2021; 12(4): 1603–13. doi: 10.1039/d0fo01217c

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7): 412–9. doi: 10.1007/bf00280883

Chen H, Sullivan G, Quon MJ. Assessing the predictive accuracy of QUICKI as a surrogate index for insulin sensitivity using a calibration model. Diabetes 2005; 54(7): 1914–25. doi: 10.2337/diabetes.54.7.1914

Lim SM, Lee HS, Jung JI, Kim SM, Kim NY, Seo TS, et al. Cyanidin-3-O-galactoside-enriched Aronia melanocarpa extract attenuates weight gain and adipogenic pathways in high-fat diet-induced obese C57BL/6 mice. Nutrients 2019; 11(5): 1190. doi: 10.3390/nu11051190

Okabe Y, Shimada T, Horikawa T, Kinoshita K, Koyama K, Ichinose K, et al. Suppression of adipocyte hypertrophy by polymethoxyflavonoids isolated from Kaempferia parviflora. Phytomedicine 2014; 21(6): 800–6. doi: 10.1016/j.phymed.2014.01.014

Lee S, Kim C, Kwon D, Kim MB, Hwang JK. Standardized Kaempferia parviflora Wall. Ex Baker (Zingiberaceae) extract inhibits fat accumulation and muscle atrophy in ob/ob mice. Evid Based Complement Alternat Med 2018; 2018: 8161042. doi: 10.1155/2018/8161042

Yoshino S, Kim M, Awa R, Kuwahara H, Kano Y, Kawada T. Kaempferia parviflora extract increases energy consumption through activation of BAT in mice. Food Sci Nutr 2014; 2(6): 63–7. doi: 10.1002/fsn3.144

Liu KH, Chu WC, To KW, Ko FW, Ng SS, Ngai JC, et al. Mesenteric fat thickness is associated with increased risk of obstructive sleep apnoea. Respirology 2014; 19(1): 92–7. doi: 10.1111/resp.12164

Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne) 2021; 12: 585887. doi: 10.3389/fendo.2021.585887

Ohashi K, Yuasa D, Shibata R, Murohara T, Ouchi N. Adiponectin as a target in obesity-related inflammatory state. Endocr Metab Immune Disord Drug Targets 2015; 15(2): 145–50. doi: 10.2174/1871530315666150316122709

Roujeau C, Jockers R, Dam J. New pharmacological perspectives for the leptin receptor in the treatment of obesity. Front Endocrinol (Lausanne) 2014; 5: 167. doi: 10.3389/fendo.2014.00167

Bilski J, Mazur-Bialy A, Wojcik D, Surmiak M, Magierowski M, Sliwowski Z, et al. Role of obesity, mesenteric adipose tissue, and adipokines in inflammatory bowel diseases. Biomolecules 2019; 9(12): 780. doi: 10.3390/biom9120780

Horikawa T, Shimada T, Okabe Y, Kinoshita K, Koyama K, Miyamoto K, et al. Polymethoxyflavonoids from Kaempferia parviflora induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation. Biol Pharm Bull 2012; 35(5): 686–92. doi: 10.1248/bpb.35.686

Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79(7): 1147–56. doi: 10.1016/0092-8674(94)90006-x

Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab 2010; 12 Suppl 2: 83–92. doi: 10.1111/j.1463-1326.2010.01275.x

Song Y, Kim MB, Kim C, Kim J, Hwang JK. 5,7-Dimethoxyflavone attenuates obesity by inhibiting adipogenesis in 3T3-L1 adipocytes and high-fat diet-induced obese C57BL/6J mice. J Med Food 2016; 19(12): 1111–9. doi: 10.1089/jmf.2016.3800

Saokaew S, Wilairat P, Raktanyakan P, Dilokthornsakul P, Dhippayom T, Kongkaew C, et al. Clinical effects of krachaidum (Kaempferia parviflora): a systematic review. J Evid Based Complementary Altern Med 2017; 22(3): 413–28. doi: 10.1177/2156587216669628

Chivapat S, Chavalittumrong P, Attawish A, Rungsipipat A. Chronic toxicity study of Kaempferia parviflora Wall ex. extract. Thai J Vet Med 2010; 40(4): 377–83.
How to Cite
Lee H. S., Jeon Y. E., Awa R., Yoshino S., & Kim E. J. (2023). Kaempferia parviflora rhizome extract exerts anti-obesity effect in high-fat diet-induced obese C57BL/6N mice. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.9413
Original Articles