Copper – a scoping review for Nordic Nutrition Recommendations 2023

  • Christine Henriksen Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
  • Erik Kristoffer Arnesen Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
Keywords: copper, trace elements, caeruloplasmin, nutrition recommendations

Abstract

Copper functions as a structural component in many proteins involved in energy and iron metabolism, production of neurotransmitters, formation of connective tissue and endogenous antioxidant defence. Several biochemical indices have been suggested and used to assess copper status, but none of these has been found suitable for the detection of marginal copper deficiency or marginal copper toxicity. Copper imbalances have been linked to the pathogenesis of several chronic inflammatory diseases. During the last decade, a number of meta-analyses and systematic reviews have been published shedding light on the association between copper imbalances and some of these pathologies. Most of these meta-analyses are based on case–control studies. All show that blood copper concentrations are higher in cases than in controls, but there is inconclusive evidence to change the recommendations.

Downloads

Download data is not yet available.

References


1.
EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on dietary reference values for copper. EFSA J 2015; 13(10): 4253. doi: 10.2903/j.efsa.2015.4253


2.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic Nutrition Recommendations 2023. Copenhagen: Nordic Council of Ministers; 2023.


3.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Hoyer A, et al. The Nordic Nutrition Recommendations 2022 – principles and methodologies. Food Nutr Res 2020; 64: 4402. doi: 10.29219/fnr.v64.4402


4.
Høyer A, Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, et al. The Nordic Nutrition Recommendations 2022 – prioritisation of topics for de novo systematic reviews. Food Nutr Res 2021; 65: 7828. doi: 10.29219/fnr.v65.7828


5.
Bost M, Houdart S, Huneau JF, Kalonji E, Margaritis I, Oberli M. Literature search and review related to specific preparatory work in the establishment of dietary references values for copper. EFSA Support Publ 2012; 9(6): 1–63. doi: 10.2903/sp.efsa.2012.EN-302


6.
Eljazzar S, Abu-Hijleh H, Alkhatib D, Sokary S, Ismail S, Al-Jayyousi GF, et al. The role of copper intake in the development and management of Type 2 diabetes: a systematic review. Nutrients 2023; 15(7): 1–25. doi: 10.3390/nu15071655


7.
Ding J, Liu Q, Liu Z, Guo H, Liang J, Zhang Y. Associations of the dietary iron, copper, and selenium level with metabolic syndrome: a meta-analysis of observational studies. Front Nutr 2021; 8: 810494. doi: 10.3389/fnut.2021.810494


8.
Ding J, Zhang Y. Associations of dietary copper, selenium, and manganese intake with depression: a meta-analysis of observational studies. Front Nutr 2022; 9: 854774. doi: 10.3389/fnut.2022.854774


9.
Nordic Council of Ministers. Nordic Nutrition Recommendations 2012 – integrating nutrition and physical activity. Copenhagen: Nordic Council of Ministers; 2014.


10.
Møller LB, Aaseth J. Copper. In: Nordberg GF, Costa M, editors. Handbook on the toxicology of metals. 5th ed. Oxford: American Press; 2022, pp. 243–61.


11.
de Romana DL, Olivares M, Uauy R, Araya M. Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol 2011; 25(1): 3–13. doi: 10.1016/j.jtemb.2010.11.004


12.
Hunt JR, Vanderpool RA. Apparent copper absorption from a vegetarian diet. Am J Clin Nutr 2001; 74(6): 803–7. doi: 10.1093/ajcn/74.6.803


13.
Nishito Y, Kambe T. Absorption mechanisms of iron, copper, and zinc: an overview. J Nutr Sci Vitaminol (Tokyo) 2018; 64(1): 1–7. doi: 10.3177/jnsv.64.1


14.
Ohrvik H, Aaseth J, Horn N. Orchestration of dynamic copper navigation – new and missing pieces. Metallomics 2017; 9(9): 1204–29. doi: 10.1039/c7mt00010c


15.
Coyle P, Philcox JC, Carey LC, Rofe AM. MetallothioneIn: the multipurpose protein. Cell Mol Life Sci 2002; 59(4): 627–47. doi: 10.1007/s00018-002-8454-2


16.
Balsano C, Porcu C, Sideri S. Is copper a new target to counteract the progression of chronic diseases? Metallomics 2018; 10(12): 1712–22. doi: 10.1039/c8mt00219c


17.
Inesi G. Molecular features of copper binding proteins involved in copper homeostasis. IUBMB Life 2017; 69(4): 211–17. doi: 10.1002/iub.1590


18.
Collins JF. Copper nutrition and biochemistry and human (patho)physiology. Adv Food Nutr Res 2021; 96: 311–64. doi: 10.1016/bs.afnr.2021.01.005


19.
Aggett PJ. Copper. In: Aggett P, editor. Encyclopedia of human nutrition. 3rd ed. Oxford: Academic Press; 2013, pp. 397–403.


20.
Collins JF. Copper. In: Ross CA, Caballero BH, Cousins RJ, Tucker KL, Ziegler TR, editors. Modern nutrition in health and disease. 11th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2014, pp. 206–16.


21.
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, et al. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35(9): e21810. doi: 10.1096/fj.202100273RR


22.
Turnlund JR, Scott KC, Peiffer GL, Jang AM, Keyes WR, Keen CL, et al. Copper status of young men consuming a low-copper diet. Am J Clin Nutr 1997; 65(1): 72–8. doi: 10.1093/ajcn/65.1.72


23.
Turnlund JR, Keen CL, Smith RG. Copper status and urinary and salivary copper in young men at three levels of dietary copper. Am J Clin Nutr 1990; 51(4): 658–64. doi: 10.1093/ajcn/51.4.658


24.
Milne DB. Copper intake and assessment of copper status. Am J Clin Nutr 1998; 67(5 Suppl): 1041S–5S. doi: 10.1093/ajcn/67.5.1041S


25.
Danzeisen R, Araya M, Harrison B, Keen C, Solioz M, Thiele D, et al. How reliable and robust are current biomarkers for copper status? Br J Nutr 2007; 98(4): 676–83. doi: 10.1017/S0007114507798951


26.
Harvey LJ, McArdle HJ. Biomarkers of copper status: a brief update. Br J Nutr 2008; 99(Suppl 3): S10–13. doi: 10.1017/S0007114508006806


27.
Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I. Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol 2016; 35: 107–15. doi: 10.1016/j.jtemb.2016.02.006


28.
Lemming EW, Pitsi T. The Nordic Nutrition Recommendations 2022 – food consumption and nutrient intake in the adult population of the Nordic and Baltic countries. Food Nutr Res 2022; 66. doi: 10.29219/fnr.v66.8572


29.
Meyer Mikalsen S, Aaseth J, Flaten TP, Whist JE, Bjorke-Monsen AL. Essential trace elements in Norwegian obese patients before and 12 months after Roux-en-Y gastric bypass surgery: copper, manganese, selenium and zinc. J Trace Elem Med Biol 2020; 62: 126650. doi: 10.1016/j.jtemb.2020.126650


30.
Danks DM. Copper deficiency in humans. Annu Rev Nutr 1988; 8: 235–57. doi: 10.1146/annurev.nu.08.070188.001315


31.
Lewis CA, de Jersey S, Seymour M, Hopkins G, Hickman I, Osland E. Iron, vitamin B(12), folate and copper deficiency after bariatric surgery and the impact on anaemia: a systematic review. Obes Surg 2020; 30(11): 4542–91. doi: 10.1007/s11695-020-04872-y


32.
Horn N, Moller LB, Nurchi VM, Aaseth J. Chelating principles in Menkes and Wilson diseases: choosing the right compounds in the right combinations at the right time. J Inorg Biochem 2019; 190: 98–112. doi: 10.1016/j.jinorgbio.2018.10.009


33.
Squitti R, Ventriglia M, Simonelli I, Bonvicini C, Costa A, Perini G, et al. Copper imbalance in Alzheimer’s disease: meta-analysis of serum, plasma, and brain specimens, and replication study evaluating ATP7B gene variants. Biomolecules 2021; 11(7): 1–23. doi: 10.3390/biom11070960


34.
Zhang L, Shao J, Tan SW, Ye HP, Shan XY. Association between serum copper/zinc ratio and lung cancer: a systematic review with meta-analysis. J Trace Elem Med Biol 2022; 74: 127061. doi: 10.1016/j.jtemb.2022.127061


35.
Kim S, Freeland-Graves JH, Babaei M, Sachdev PK, Beretvas SN. Quantifying the association between acute leukemia and serum zinc, copper, and selenium: a meta-analysis. Leuk Lymphoma 2019; 60(6): 1548–56. doi: 10.1080/10428194.2018.1540043


36.
Lin S, Yang H. Ovarian cancer risk according to circulating zinc and copper concentrations: a meta-analysis and Mendelian randomization study. Clin Nutr 2021; 40(4): 2464–8. doi: 10.1016/j.clnu.2020.10.011


37.
Zhang M, Shi M, Zhao Y. Association between serum copper levels and cervical cancer risk: a meta-analysis. Biosci Rep 2018; 38(4): 1–7. doi: 10.1042/BSR20180161


38.
Feng Y, Zeng JW, Ma Q, Zhang S, Tang J, Feng JF. Serum copper and zinc levels in breast cancer: a meta-analysis. J Trace Elem Med Biol 2020; 62: 126629. doi: 10.1016/j.jtemb.2020.126629


39.
Zhang M, Li W, Wang Y, Wang T, Ma M, Tian C. Association between the change of serum copper and ischemic stroke: a systematic review and meta-analysis. J Mol Neurosci 2020; 70(3): 475–80. doi: 10.1007/s12031-019-01441-6


40.
Jager S, Cabral M, Kopp JF, Hoffmann P, Ng E, Whitfield JB, et al. Blood copper and risk of cardiometabolic diseases: a Mendelian randomization study. Hum Mol Genet 2022; 31(5): 783–91. doi: 10.1093/hmg/ddab275


41.
Wang S, Wang N, Pan D, Zhang H, Sun G. Effects of copper supplementation on blood lipid level: a systematic review and a meta-analysis on randomized clinical trials. Biol Trace Elem Res 2021; 199(8): 2851–7. doi: 10.1007/s12011-020-02423-1


42.
Chen A, Li G, Liu Y. Association between copper levels and myocardial infarction: a meta-analysis. Inhal Toxicol 2015; 27(5): 237–46. doi: 10.3109/08958378.2015.1030480


43.
Qiu Q, Zhang F, Zhu W, Wu J, Liang M. Copper in diabetes mellitus: a meta-analysis and systematic review of plasma and serum studies. Biol Trace Elem Res 2017; 177(1): 53–63. doi: 10.1007/s12011-016-0877-y


44.
Chen T, Zhang H, Zhang Y, Yang M, Wu J, Yang M, et al. Association of circulating and aortic zinc and copper levels with clinical abdominal aortic aneurysm: a meta-analysis. Biol Trace Elem Res 2021; 199(2): 513–26. doi: 10.1007/s12011-020-02187-8


45.
Ventriglia M, Bucossi S, Panetta V, Squitti R. Copper in Alzheimer’s disease: a meta-analysis of serum, plasma, and cerebrospinal fluid studies. J Alzheimers Dis 2012; 30(4): 981–4. doi: 10.3233/JAD-2012-120244


46.
Loef M, Walach H. Copper and iron in Alzheimer’s disease: a systematic review and its dietary implications. Br J Nutr 2012; 107(1): 7–19. doi: 10.1017/S000711451100376X


47.
Kumar P, Hamza N, Madhok B, De Alwis N, Sharma M, Miras AD, et al. Copper deficiency after gastric bypass for morbid obesity: a systematic review. Obes Surg 2016; 26(6): 1335–42. doi: 10.1007/s11695-016-2162-8


48.
Mao S, Huang S. Zinc and copper levels in bladder cancer: a systematic review and meta-analysis. Biol Trace Elem Res 2013; 153(1–3): 5–10. doi: 10.1007/s12011-013-9682-z


49.
Rondanelli M, Faliva MA, Infantino V, Gasparri C, Iannello G, Perna S, et al. Copper as dietary supplement for bone metabolism: a review. Nutrients 2021; 13(7): 1–9. doi: 10.3390/nu13072246


50.
Jouybari L, Kiani F, Islami F, Sanagoo A, Sayehmiri F, Hosnedlova B, et al. Copper concentrations in breast cancer: a systematic review and meta-analysis. Curr Med Chem 2020; 27(37): 6373–83. doi: 10.2174/0929867326666190918120209


51.
Ni M, You Y, Chen J, Zhang L. Copper in depressive disorder: a systematic review and meta-analysis of observational studies. Psychiatry Res 2018; 267: 506–15. doi: 10.1016/j.psychres.2018.05.049


52.
Ressnerova A, Raudenska M, Holubova M, Svobodova M, Polanska H, Babula P, et al. Zinc and copper homeostasis in head and neck cancer: review and meta-analysis. Curr Med Chem 2016; 23(13): 1304–30. doi: 10.2174/0929867323666160405111543


53.
Huang L, Shen R, Huang L, Yu J, Rong H. Association between serum copper and heart failure: a meta-analysis. Asia Pac J Clin Nutr 2019; 28(4): 761–9. doi: 10.6133/apjcn.201912_28(4).0013


54.
Li Z, Wang W, Liu H, Li S, Zhang D. The association of serum zinc and copper with hypertension: a meta-analysis. J Trace Elem Med Biol 2019; 53: 41–8. doi: 10.1016/j.jtemb.2019.01.018


55.
Zhang X, Yang Q. Association between serum copper levels and lung cancer risk: a meta-analysis. J Int Med Res 2018; 46(12): 4863–73. doi: 10.1177/0300060518798507


56.
Zheng J, Mao X, Ling J, He Q, Quan J. Low serum levels of zinc, copper, and iron as risk factors for osteoporosis: a meta-analysis. Biol Trace Elem Res 2014; 160(1): 15–23. doi: 10.1007/s12011-014-0031-7


57.
Gu K, Li X, Xiang W, Jiang X. The relationship between serum copper and overweight/obesity: a meta-analysis. Biol Trace Elem Res 2020; 194(2): 336–47. doi: 10.1007/s12011-019-01803-6


58.
Genoud S, Senior AM, Hare DJ, Double KL. Meta-analysis of copper and iron in Parkinson’s disease brain and biofluids. Mov Disord 2020; 35(4): 662–71. doi: 10.1002/mds.27947


59.
Adani G, Filippini T, Michalke B, Vinceti M. Selenium and other trace elements in the etiology of Parkinson’s disease: a systematic review and meta-analysis of case-control studies. Neuroepidemiology 2020; 54(1): 1–23. doi: 10.1159/000502357


60.
Jiang Q, Zhang F, Han L, Zhu B, Liu X. Serum copper level and polycystic ovarian syndrome: a meta-analysis. Gynecol Obstet Invest 2021; 86(3): 239–46. doi: 10.1159/000516518


61.
Shen F, Cai WS, Li JL, Feng Z, Cao J, Xu B. The association between serum levels of selenium, copper, and magnesium with thyroid cancer: a meta-analysis. Biol Trace Elem Res 2015; 167(2): 225–35. doi: 10.1007/s12011-015-0304-9


62.
EFSA Scientific Committee. Re-evaluation of the existing health-based guidance values for copper and exposure assessment from all sources. EFSA J 2023; 21(1): 1–117. doi: 10.2903/j.efsa.2023.7728


63.
Tanner MS. Role of copper in Indian childhood cirrhosis. Am J Clin Nutr 1998; 67(5 Suppl): 1074S–81S. doi: 10.1093/ajcn/67.5.1074S


64.
Spitalny KC, Brondum J, Vogt RL, Sargent HE, Kappel S. Drinking-water-induced copper intoxication in a Vermont family. Pediatrics 1984; 74(6): 1103–6. doi: 10.1542/peds.74.6.1103


65.
Pettersson R, Rasmussen F, Oskarsson A. Copper in drinking water: not a strong risk factor for diarrhoea among young children. A population-based study from Sweden. Acta Paediatr 2003; 92(4): 473–80. doi: 10.1111/j.1651-2227.2003.tb00581.x


66.
European Commisssion, Scientific Committee on Food. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Copper (SCF/CS/NUT/GEN/18). Brussels; 2003. Available from: https://food.ec.europa.eu/system/files/2020-12/sci-com_scf_out171_en.pdf [cited June 2023].


67.
Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: The National Academies Press; 2001.


68.
Reiser S, Smith JC, Jr., Mertz W, Holbrook JT, Scholfield DJ, Powell AS, et al. Indices of copper status in humans consuming a typical American diet containing either fructose or starch. Am J Clin Nutr 1985; 42(2): 242–51. doi: 10.1093/ajcn/42.2.242


69.
Lowy SL, Fisler JS, Drenick EJ, Hunt IF, Swendseid ME. Zinc and copper nutriture in obese men receiving very low calorie diets of soy or collagen protein. Am J Clin Nutr 1986; 43(2): 272–87. doi: 10.1093/ajcn/43.2.272


70.
Lukaski HC, Klevay LM, Milne DB. Effects of dietary copper on human autonomic cardiovascular function. Eur J Appl Physiol Occup Physiol 1988; 58(1–2): 74–80. doi: 10.1007/BF00636606


71.
Turnlund JR, Thompson KH, Scott KC. Key features of copper versus molybdenum metabolism models in humans. Adv Exp Med Biol 1998; 445: 271–81. doi: 10.1007/978-1-4899-1959-5_17


72.
Davis CD. Low dietary copper increases fecal free radical production, fecal water alkaline phosphatase activity and cytotoxicity in healthy men. J Nutr 2003; 133(2): 522–7. doi: 10.1093/jn/133.2.522


73.
Bonham M, O’Connor JM, Hannigan BM, Strain JJ. The immune system as a physiological indicator of marginal copper status? Br J Nutr 2002; 87(5): 393–403. doi: 10.1079/BJNBJN2002558


74.
Harvey LJ, Majsak-Newman G, Dainty JR, Lewis DJ, Langford NJ, Crews HM, et al. Adaptive responses in men fed low- and high-copper diets. Br J Nutr 2003; 90(1): 161–8. doi: 10.1079/bjn2003887


75.
Milne DB, Davis CD, Nielsen FH. Low dietary zinc alters indices of copper function and status in postmenopausal women. Nutrition 2001; 17(9): 701–8. doi: 10.1016/s0899-9007(01)00560-3


76.
Turnlund JR, Keyes WR, Kim SK, Domek JM. Long-term high copper intake: effects on copper absorption, retention, and homeostasis in men. Am J Clin Nutr 2005; 81(4): 822–8. doi: 10.1093/ajcn/81.4.822


77.
Milne DB, Johnson PE, Klevay LM, Sandstead HH. Effect of copper intake on balance, absorption, and status indices of copper in men. Nutr Res 1990; 10(9): 975–86. doi: 10.1016/S0271-5317(05)80039-9


78.
Turnlund JR, Keyes WR, Peiffer GL, Scott KC. Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am J Clin Nutr 1998; 67(6): 1219–25. doi: 10.1093/ajcn/67.6.1219


79.
Biego GH, Joyeux M, Hartemann P, Debry G. Determination of mineral contents in different kinds of milk and estimation of dietary intake in infants. Food Addit Contam 1998; 15(7): 775–81. doi: 10.1080/02652039809374709


80.
Saghazadeh A, Mahmoudi M, Shahrokhi S, Mojarrad M, Dastmardi M, Mirbeyk M, et al. Trace elements in schizophrenia: a systematic review and meta-analysis of 39 studies (N = 5151 participants). Nutr Rev 2020; 78(4): 278-303. doi: 10.1093/nutrit/nuz059.
Published
2023-11-27
How to Cite
Henriksen C., & Arnesen E. K. (2023). Copper – a scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.10322
Section
Nordic Nutrition Recommendations

Most read articles by the same author(s)