Legume consumption in adults and risk of cardiovascular disease and type 2 diabetes: a systematic review and meta-analysis

  • Birna Thorisdottir Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
  • Erik Kristoffer Arnesen Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
  • Linnea Bärebring Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
  • Jutta Dierkes Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen; and Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
  • Christel Lamberg-Allardt Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
  • Alfons Ramel Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
  • Bright I. Nwaru Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
  • Fredrik Söderlund Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
  • Agneta Åkesson Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
Keywords: Fabaceae, Pulses, Beans, Lentils, Peas, Human Nutrition, Cardiovascular Diseases, Diabetes Mellitus type 2, Non-Communicable Diseases

Abstract

Objectives: This study aimed to systematically review the evidence for associations between consumption of legumes and cardiovascular disease (CVD), type 2 diabetes (T2D) and their risk factors among healthy adults.

Methods: We searched MEDLINE, Embase, Cochrane Central Register of Controlled Trials, and Scopus up to 16 May 2022 for ≥4 weeks long randomized (RCT) and non-randomized controlled trials and prospective cohort studies with follow-up ≥12 months, assessing legume intake (beans/lentils/peas/soybeans, excluding peanuts and legume-products/protein/powder/flour) as the intervention or exposure. Outcomes were CVD, coronary heart disease (CHD), stroke, T2D and in intervention trials only: changes in blood lipids, glycemic markers, and blood pressure. Risk of bias (RoB) was evaluated with Cochrane’s RoB2, ROBINS-I, and US Department of Agriculture (USDA)’s RoB-NObS. Effect sizes were pooled using random-effects meta-analyses and expressed as relative risk or weighed mean differences with 95% confidence intervals, heterogeneity quantified as I2. The evidence was appraised according to World Cancer Research Fund’s criteria.

Results: Of the 181 full-text articles assessed for eligibility, 47 were included: 31 cohort studies (2,081,432 participants with generally low legume consumption), 14 crossover RCTs (448 participants), one parallel RCT and one non-randomized trial. Meta-analyses of cohort studies were suggestive of null associations for CVD, CHD, stroke and T2D. Meta-analyses of RCTs suggested a protective effect on total cholesterol (mean difference −0.22 mmol/L), low density lipoprotein (LDL)-cholesterol (−0.19 mmol/L), fasting glucose (−0.19 mmol/L), and HOMA-IR (−0.30). Heterogeneity was high (I2 = 52% for LDL-cholesterol, >75% for others). The overall evidence for associations between consumption of legumes and risk of CVD and T2D was considered limited – no conclusion.

Conclusion: Legume consumption was not found to influence risk of CVD and T2D in healthy adult populations with generally low legume consumption. However, protective effects on risk factors, seen in RCTs, lend some support for recommending legume consumption as part of diverse and healthy dietary patterns for prevention of CVD and T2D.

Downloads

Download data is not yet available.

References


1.
GBD Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1223–49. doi: 10.1016/S0140-6736(20)30752-2


2.
Moreno-Valdespino CA, Luna-Vital D, Camacho-Ruiz RM, Mojica L. Bioactive proteins and phytochemicals from legumes: mechanisms of action preventing obesity and type-2 diabetes. Food Res Int 2020; 130: 108905. doi: 10.1016/j.foodres.2019.108905


3.
Rodríguez L, Mendez D, Montecino H, Carrasco B, Arevalo B, Palomo I, et al. Role of phaseolus vulgaris L. in the prevention of cardiovascular diseases-cardioprotective potential of bioactive compounds. Plants (Basel) 2022; 11(2): 186. doi: 10.3390/plants11020186


4.
Bouchenak M, Lamri-Senhadji M. Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review. J Med Food 2013; 16(3): 185–98. doi: 10.1089/jmf.2011.0238


5.
Messina V. Nutritional and health benefits of dried beans. Am J Clin Nutr 2014; 100(Suppl 1): 437s–42s. doi: 10.3945/ajcn.113.071472


6.
Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019; 393(10170): 447–92. doi: 10.1016/S0140-6736(18)31788-4


7.
Herforth A, Arimond M, Álvarez-Sánchez C, Coates J, Christianson K, Muehlhoff E. A global review of food-based dietary guidelines. Adv Nutr 2019; 10(4): 590–605. doi: 10.1093/advances/nmy130


8.
Semba RD, Ramsing R, Rahman N, Kraemer K, Bloem MW. Legumes as a sustainable source of protein in human diets. Global Food Security 2021; 28: 100520. doi: 10.1016/j.gfs.2021.100520


9.
Springmann M, Mozaffarian D, Rosenzweig C, Micha R. Chapter 02 What we eat matters: Health and environmental impacts of diets worldwide. 2021 Global Nutrition Report: The state of global nutrition. Bristol, UK: Development Initiatives; 2021.


10.
Lemming EW, Pitsi T. The Nordic Nutrition Recommendations 2022 – food consumption and nutrient intake in the adult population of the Nordic and Baltic countries. Food Nutr Res 2022; 66: 8572. doi: 10.29219/fnr.v66.8572


11.
Høyer A, Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, et al. The Nordic Nutrition Recommendations 2022 – prioritisation of topics for de novo systematic reviews. Food Nutr Res 2021; 65: 7828. doi: 10.29219/fnr.v65.7828


12.
Arnesen EK, Christensen JJ, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic Nutrition Recommendations 2022 – handbook for qualified systematic reviews. Food Nutr Res 2020; 64: 4404. doi: 10.29219/fnr.v64.4404


13.
Arnesen EK, Christensen JJ, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic Nutrition Recommendations 2022 – structure and rationale of qualified systematic reviews. Food Nutr Res 2020; 64: 4403. doi: 10.29219/fnr.v64.4403


14.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71. doi: 10.1136/bmj.n71


15.
Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021; 372: n160. doi: 10.1136/bmj.n160


16.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic Nutrition Recommendations 2022 – principles and methodologies. Food Nutr Res 2020; 64: 4402. doi: 10.29219/fnr.v64.4402


17.
Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366: l4898. doi: 10.1136/bmj.l4898


18.
Higgins JPT, Li T, Sterne J on behalf of the RoB 2 working group on crossover trials. Revised Cochrane risk of bias tool for randomized trials (RoB 2) – Additional considerations for crossover trials 2021. Available from: https://www.riskofbias.info/welcome/rob-2-0-tool/rob-2-for-crossover-trials [cited 12 September 2022].


19.
Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016; 355: i4919. doi: 10.1136/bmj.i4919


20.
SDA Nutrition Evidence Systematic Review. Risk of Bias for Nutrition Observational Studies (RoB-NObs) tool 2019. Available from: https://nesr.usda.gov/sites/default/files/2019-07/RiskOfBiasForNutritionObservationalStudies-RoB-NObs.pdf


21.
McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 2021; 12: 55–61. doi: 10.1002/jrsm.1411


22.
AHRQ Methods for Effective Health Care. Methods guide for effectiveness and comparative effectiveness reviews. Rockville, MD: Agency for Healthcare Research and Quality (US); 2008.


23.
Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. eds. Cochrane Handbook for Systematic Reviews of Interventions version 6.3. Cochrane, 2022. Available from: www.training.cochrane.org/handbook [cited 12 September 2022].


24.
VanderWeele TJ. On a square-root transformation of the odds ratio for a common outcome. Epidemiology 2017; 28(6): e58–60. doi: 10.1097/EDE.0000000000000733


25.
Greenland S. Quantitative methods in the review of epidemiologic literature. Epidemiol Rev 1987; 9: 1–30. doi: 10.1093/oxfordjournals.epirev.a036298


26.
Marinangeli CPF, Curran J, Barr SI, Slavin J, Puri S, Swaminathan S, et al. Enhancing nutrition with pulses: defining a recommended serving size for adults. Nutr Rev 2017; 75(12): 990–1006. doi: 10.1093/nutrit/nux058


27.
Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr 2014; 100(1): 278–88. doi: 10.3945/ajcn.113.076901


28.
Bechthold A, Boeing H, Schwedhelm C, Hoffmann G, Knüppel S, Iqbal K, et al. Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2019; 59(7): 1071–90. doi: 10.1080/10408398.2017.1392288


29.
Viguiliouk E, Glenn AJ, Nishi SK, Chiavaroli L, Seider M, Khan T, et al. Associations between dietary pulses alone or with other legumes and cardiometabolic disease outcomes: an umbrella review and updated systematic review and meta-analysis of prospective cohort studies. Adv Nutr 2019; 10(Suppl_4): S308–s19. doi: 10.1093/advances/nmz113


30.
Crippa A, Discacciati A, Bottai M, Spiegelman D, Orsini N. One-stage dose–response meta-analysis for aggregated data. Stat Methods Med Res 2019; 28(5): 1579–96. doi: 10.1177/0962280218773122


31.
Orsini N, Greenland S. A procedure to tabulate and plot results after flexible modeling of a quantitative covariate. Stata J 2011; 11(1): 1–29. doi: 10.1177/1536867X1101100101


32.
Higgins JP, Eldridge S, Li T. Including variants on randomized trials. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. eds. Cochrane handbook for systematic reviews of interventions version 6.3. Cochrane; 2022. Available from www.training.cochrane.org/handbook [cited 12 September 2022].


33.
Balk EM, Earley A, Patel K, Trikalinos TA, Dahabreh IJ. AHRQ methods for effective health care. Empirical assessment of within-arm correlation imputation in trials of continuous outcomes. Rockville, MD: Agency for Healthcare Research and Quality (US); 2012.


34.
Page MJ, Higgins JP, Sterne JA. Assessing risk of bias due to missing results in a synthesis. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. eds. Cochrane Handbook for systematic reviews of interventions version 6.3. Cochrane; 2022. Available from: www.training.cochrane.org/handbook [cited 12 September 2022].


35.
Bernstein AM, Pan A, Rexrode KM, Stampfer M, Hu FB, Mozaffarian D, et al. Dietary protein sources and the risk of stroke in men and women. Stroke 2012; 43(3): 637–44. doi: 10.1161/STROKEAHA.111.633404


36.
Blekkenhorst LC, Bondonno CP, Lewis JR, Devine A, Zhu K, Lim WH, et al. Cruciferous and allium vegetable intakes are inversely associated with 15-year atherosclerotic vascular disease deaths in older adult women. J Am Heart Assoc 2017; 6(10): e006558. doi: 10.1161/JAHA.117.006558


37.
Farvid MS, Malekshah AF, Pourshams A, Poustchi H, Sepanlou SG, Sharafkhah M, et al. Dietary protein sources and all-cause and cause-specific mortality: the Golestan cohort study in Iran. Am J Prev Med 2017; 52(2): 237–48. doi: 10.1016/j.amepre.2016.10.041


38.
Fraser GE, Sabaté J, Beeson WL, Strahan TM. A possible protective effect of nut consumption on risk of coronary heart disease. The Adventist Health Study. Arch Intern Med 1992; 152(7): 1416–24. doi: 10.1001/archinte.1992.00400190054010


39.
Fung TT, Isanaka S, Hu FB, Willett WC. International food group-based diet quality and risk of coronary heart disease in men and women. Am J Clin Nutr 2018; 107(1): 120–9. doi: 10.1093/ajcn/nqx015


40.
Golzarand M, Mirmiran P, Azizi F. Adherence to the MIND diet and the risk of cardiovascular disease in adults: a cohort study. Food Funct 2022; 13(3): 1651–8. doi: 10.1039/D1FO02069B


41.
Haring B, Gronroos N, Nettleton JA, von Ballmoos MC, Selvin E, Alonso A. Dietary protein intake and coronary heart disease in a large community based cohort: results from the Atherosclerosis Risk in Communities (ARIC) study [corrected]. PLoS One 2014; 9(10): e109552. doi: 10.1371/journal.pone.0109552


42.
Haring B, Misialek JR, Rebholz CM, Petruski-Ivleva N, Gottesman RF, Mosley TH, et al. Association of dietary protein consumption with incident silent cerebral infarcts and stroke: the atherosclerosis risk in communities (ARIC) study. Stroke 2015; 46(12):3 443–50. doi: 10.1161/STROKEAHA.115.010693


43.
Im J, Park K. Association between soy food and dietary soy isoflavone intake and the risk of cardiovascular disease in women: a prospective cohort study in Korea. Nutrients 2021; 13(5): 1407. doi: 10.3390/nu13051407


44.
Kokubo Y, Iso H, Ishihara J, Okada K, Inoue M, Tsugane S. Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: the Japan Public Health Center-based (JPHC) study cohort I. Circulation 2007; 116(22): 2553–62. doi: 10.1161/CIRCULATIONAHA.106.683755


45.
Martínez-González MA, García-López M, Bes-Rastrollo M, Toledo E, Martínez-Lapiscina EH, Delgado-Rodriguez M, et al. Mediterranean diet and the incidence of cardiovascular disease: a Spanish cohort. Nutr Met Cardiovasc Dis 2011; 21(4): 237–44. doi: 10.1016/j.numecd.2009.10.005


46.
Miller V, Mente A, Dehghan M, Rangarajan S, Zhang X, Swaminathan S, et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. Lancet 2017; 390(10107): 2037–49. doi: 10.1016/S0140-6736(17)32253-5


47.
Mizrahi A, Knekt P, Montonen J, Laaksonen MA, Heliövaara M, Järvinen R. Plant foods and the risk of cerebrovascular diseases: a potential protection of fruit consumption. Br J Nutr 2009; 102(7): 1075–83. doi: 10.1017/S0007114509359097


48.
Nagura J, Iso H, Watanabe Y, Maruyama K, Date C, Toyoshima H, et al. Fruit, vegetable and bean intake and mortality from cardiovascular disease among Japanese men and women: the JACC Study. Br J Nutr 2009; 102(2): 285–92. doi: 10.1017/S0007114508143586


49.
Nouri F, Haghighatdoost F, Mohammadifard N, Mansourian M, Sadeghi M, Roohafza H, et al. The longitudinal association between soybean and non-soybean legumes intakes and risk of cardiovascular disease: Isfahan cohort study. Br Food J 2021; 123(8): 2864–79. doi: 10.1108/BFJ-08-2020-0699


50.
Papandreou C, Becerra-Tomás N, Bulló M, Martínez-González M, Corella D, Estruch R, et al. Legume consumption and risk of all-cause, cardiovascular, and cancer mortality in the PREDIMED study. Clin Nutr 2019; 38(1): 348–56. doi: 10.1016/j.clnu.2017.12.019


51.
Perez-Cornago A, Crowe FL, Appleby PN, Bradbury KE, Wood AM, Jakobsen MU, et al. Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Int J Epidemiol 2021; 50(1): 212–22. doi: 10.1093/ije/dyaa155


52.
Stefler D, Malyutina S, Kubinova R, Pajak A, Peasey A, Pikhart H, et al. Mediterranean diet score and total and cardiovascular mortality in Eastern Europe: the HAPIEE study. Eur J Nutr 2017; 56(1): 421–9. doi: 10.1007/s00394-015-1092-x


53.
Tong TYN, Appleby PN, Key TJ, Dahm CC, Overvad K, Olsen A, et al. The associations of major foods and fibre with risks of ischaemic and haemorrhagic stroke: a prospective study of 418 329 participants in the EPIC cohort across nine European countries. Eur Heart J 2020; 41(28): 2632–40. doi: 10.1093/eurheartj/ehaa007


54.
Yamasaki K, Kayaba K, Ishikawa S. Soy and soy products intake, all-cause mortality, and cause-specific mortality in Japan: The Jichi Medical School Cohort Study. Asia Pac J Public Health 2015; 27(5): 531–41. doi: 10.1177/1010539514539545


55.
Yu D, Zhang X, Gao YT, Li H, Yang G, Huang J, et al. Fruit and vegetable intake and risk of CHD: results from prospective cohort studies of Chinese adults in Shanghai. Br J Nutr 2014; 111(2): 353–62. doi: 10.1017/S0007114513002328


56.
Bazzano LA, Li TY, Joshipura KJ, Hu FB. Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care 2008; 31(7): 1311–7. doi: 10.2337/dc08-0080


57.
Becerra-Tomás N, Díaz-López A, Rosique-Esteban N, Ros E, Buil-Cosiales P, Corella D, et al. Legume consumption is inversely associated with type 2 diabetes incidence in adults: a prospective assessment from the PREDIMED study. Clin Nutr 2018; 37(3): 906–13. doi: 10.1016/j.clnu.2017.03.015


58.
Ericson U, Sonestedt E, Gullberg B, Hellstrand S, Hindy G, Wirfält E, et al. High intakes of protein and processed meat associate with increased incidence of type 2 diabetes. Br J Nutr 2013; 109(6): 1143–53. doi: 10.1017/S0007114512003017


59.
Hodge AM, English DR, O’Dea K, Giles GG. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004; 27(11): 2701–6. doi: 10.2337/diacare.27.11.2701


60.
Khalili-Moghadam S, Mirmiran P, Bahadoran Z, Azizi F. The Mediterranean diet and risk of type 2 diabetes in Iranian population. Eur J Clin Nutr 2019; 73(1): 72–8. doi: 10.1038/s41430-018-0336-2


61.
Liu S, Serdula M, Janket SJ, Cook NR, Sesso HD, Willett WC, et al. A prospective study of fruit and vegetable intake and the risk of type 2 diabetes in women. Diabetes Care 2004; 27(12): 2993–6. doi: 10.2337/diacare.27.12.2993


62.
Meyer KA, Kushi LH, Jacobs DR, Jr., Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 2000; 71(4): 921–30. doi: 10.1093/ajcn/71.4.921


63.
O’Connor LE, Hu EA, Steffen LM, Selvin E, Rebholz CM. Adherence to a Mediterranean-style eating pattern and risk of diabetes in a U.S. prospective cohort study. Nutr Diabetes 2020; 10(1): 8. doi: 10.1038/s41387-020-0113-x


64.
Villegas R, Gao YT, Yang G, Li HL, Elasy TA, Zheng W, et al. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am J Clin Nutr 2008; 87(1): 162–7. doi: 10.1093/ajcn/87.1.162


65.
Yan F, Eshak ES, Shirai K, Dong JY, Muraki I, Tamakoshi A, et al. Soy intake and risk of type 2 diabetes among Japanese men and women: JACC study. Front Nutr 2021; 8: 813742. doi: 10.3389/fnut.2021.813742


66.
Abeysekara S, Chilibeck PD, Vatanparast H, Zello GA. A pulse-based diet is effective for reducing total and LDL-cholesterol in older adults. Br J Nutr 2012; 108(Suppl 1): S103–10. doi: 10.1017/S0007114512000748


67.
Azadbakht L, Kimiagar M, Mehrabi Y, Esmaillzadeh A, Padyab M, Hu FB, et al. Soy inclusion in the diet improves features of the metabolic syndrome: a randomized crossover study in postmenopausal women. Am J Clin Nutr 2007; 85(3): 735–41. doi: 10.1093/ajcn/85.3.735


68.
Bakhtiari A, Hajian-Tilaki K, Omidvar S, Nasiri-Amiri F. Clinical and metabolic response to soy administration in older women with metabolic syndrome: a randomized controlled trial. Diabetol Metab Syndr 2019; 11: 47. doi: 10.1186/s13098-019-0441-y


69.
Cobiac L, McArthur R, Nestel PJ. Can eating baked beans lower plasma cholesterol? Eur J Clin Nutr 1990; 44(11): 819–22.


70.
Doma KM, Dolinar KF, Dan Ramdath D, Wolever TMS, Duncan AM. Canned beans decrease serum total and LDL cholesterol in adults with elevated LDL cholesterol in a 4-wk multicenter, randomized, crossover study. J Nutr 2021; 151(12): 3701–9. doi: 10.1093/jn/nxab323


71.
Duane WC. Effects of legume consumption on serum cholesterol, biliary lipids, and sterol metabolism in humans. J Lipid Res 1997; 38(6): 1120–8. doi: 10.1016/S0022-2275(20)37194-7


72.
Lin BW, Wu ZF, Liu WZ, Zhang RJ. Effects of bean meal on serum cholesterol and triglycerides. Chin Med J (Engl) 1981; 94(7): 455–8.


73.
Mackay S, Ball MJ. Do beans and oat bran add to the effectiveness of a low-fat diet? Eur J Clin Nutr 1992; 46(9): 641–8.


74.
Mizelman E, Chilibeck PD, Hanifi A, Kaviani M, Brenna E, Zello GA. A low-glycemic index, high-fiber, ulse-based diet improves lipid profile, but does not affect performance in soccer players. Nutrients 2020; 12(5): 1324. doi: 10.3390/nu12051324


75.
Nestel P, Cehun M, Chronopoulos A. Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. Am J Clin Nutr 2004; 79(3): 390–5. doi: 10.1093/ajcn/79.3.390


76.
Pittaway JK, Ahuja KD, Cehun M, Chronopoulos A, Robertson IK, Nestel PJ, et al. Dietary supplementation with chickpeas for at least 5 weeks results in small but significant reductions in serum total and low-density lipoprotein cholesterols in adult women and men. Ann Nutr Metab 2006; 50(6): 512–8. doi: 10.1159/000098143


77.
Pittaway JK, Ahuja KD, Robertson IK, Ball MJ. Effects of a controlled diet supplemented with chickpeas on serum lipids, glucose tolerance, satiety and bowel function. J Am Coll Nutr 2007; 26(4): 334–40. doi: 10.1080/07315724.2007.10719620


78.
Saraf-Bank S, Esmaillzadeh A, Faghihimani E, Azadbakht L. Effects of legume-enriched diet on cardiometabolic risk factors among individuals at risk for diabetes: a crossover study. J Am Coll Nutr 2016; 35(1): 31–40. doi: 10.1080/07315724.2014.931262


79.
Tischmann L, Adam TC, Mensink RP, Joris PJ. Longer-term soy nut consumption improves vascular function and cardiometabolic risk markers in older adults: results of a randomized, controlled cross-over trial. Clin Nutr 2022; 41(5): 1052–8. doi: 10.1016/j.clnu.2022.03.014


80.
Winham DM, Hutchins AM, Johnston CS. Pinto bean consumption reduces biomarkers for heart disease risk. J Am Coll Nutr 2007; 26(3): 243–9. doi: 10.1080/07315724.2007.10719607


81.
Winham DM, Hutchins AM. Baked bean consumption reduces serum cholesterol in hypercholesterolemic adults. Nutr Res 2007; 27(7): 380–6. doi: 10.1016/j.nutres.2007.04.017


82.
Marventano S, Izquierdo Pulido M, Sánchez-González C, Godos J, Speciani A, Galvano F, et al. Legume consumption and CVD risk: a systematic review and meta-analysis. Public Health Nutr 2017; 20(2): 245–54. doi: 10.1017/S1368980016002299


83.
Martini D, Godos J, Marventano S, Tieri M, Ghelfi F, Titta L, et al. Nut and legume consumption and human health: an umbrella review of observational studies. Int J Food Sci Nutr 2021; 72(7): 871–8. doi: 10.1080/09637486.2021.1880554


84.
Miller V, Micha R, Choi E, Karageorgou D, Webb P, Mozaffarian D. Evaluation of the quality of evidence of the association of foods and nutrients with cardiovascular disease and diabetes: a systematic review. JAMA Netw Open 2022; 5(2): e2146705. doi: 10.1001/jamanetworkopen.2021.46705


85.
Li H, Li J, Shen Y, Wang J, Zhou D. Legume consumption and all-cause and cardiovascular disease mortality. Biomed Res Int 2017; 2017: 8450618. doi: 10.1155/2017/8450618


86.
Deng C, Lu Q, Gong B, Li L, Chang L, Fu L, et al. Stroke and food groups: an overview of systematic reviews and meta-analyses. Public Health Nutr 2018; 21(4): 766–76. doi: 10.1017/S1368980017003093


87.
Shi ZQ, Tang JJ, Wu H, Xie CY, He ZZ. Consumption of nuts and legumes and risk of stroke: a meta-analysis of prospective cohort studies. Nutr Met Cardiovasc Dis 2014; 24(12): 1262–71. doi: 10.1016/j.numecd.2014.06.009


88.
Namazi N, Saneei P, Larijani B, Esmaillzadeh A. Soy product consumption and the risk of all-cause, cardiovascular and cancer mortality: a systematic review and meta-analysis of cohort studies. Food Funct 2018; 9(5): 2576–88. doi: 10.1039/C7FO01622K


89.
Nachvak SM, Moradi S, Anjom-Shoae J, Rahmani J, Nasiri M, Maleki V, et al. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. J Acad Nutr Diet 2019; 119(9): 1483–500.e17. doi: 10.1016/j.jand.2019.04.011


90.
Li N, Wu X, Zhuang W, Xia L, Chen Y, Zhao R, et al. Soy and isoflavone consumption and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomized trials in humans. Mol Nutr Food Res 2020; 64(4): e1900751. doi: 10.1002/mnfr.201900751


91.
Pearce M, Fanidi A, Bishop TRP, Sharp SJ, Imamura F, Dietrich S, et al. Associations of total legume, pulse, and soy consumption with incident type 2 diabetes: federated meta-analysis of 27 studies from diverse world regions. J Nutr 2021; 151(5): 1231–40. doi: 10.1093/jn/nxaa447


92.
Tang J, Wan Y, Zhao M, Zhong H, Zheng JS, Feng F. Legume and soy intake and risk of type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Am J Clin Nutr 2020; 111(3): 677–88. doi: 10.1093/ajcn/nqz338


93.
Bazzano LA, Thompson AM, Tees MT, Nguyen CH, Winham DM. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr MetabCardiovasc Dis. 2011; 21(2): 94–103. doi: 10.1016/j.numecd.2009.08.012


94.
Ha V, Sievenpiper JL, de Souza RJ, Jayalath VH, Mirrahimi A, Agarwal A, et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials. CMAJ. 2014; 186(8): E252–62. doi: 10.1503/cmaj.131727


95.
Ferreira H, Vasconcelos M, Gil AM, Pinto E. Benefits of pulse consumption on metabolism and health: a systematic review of randomized controlled trials. Crit Rev Food Sci Nutr 2021; 61(1): 85–96. doi: 10.1080/10408398.2020.1716680


96.
Bielefeld D, Grafenauer S, Rangan A. The effects of legume consumption on markers of glycaemic control in individuals with and without diabetes mellitus: a systematic literature review of randomised controlled trials. Nutrients 2020; 12(7): 2023. doi: 10.3390/nu12072123


97.
Heidemann C, Hoffmann K, Spranger J, Klipstein-Grobusch K, Möhlig M, Pfeiffer AF, et al. A dietary pattern protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC) – Potsdam Study cohort. Diabetologia 2005; 48(6): 1126–34. doi: 10.1007/s00125-005-1743-1


98.
Rees K, Takeda A, Martin N, Ellis L, Wijesekara D, Vepa A, et al. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2019; 3(3): CD009825. doi: 10.1002/14651858.CD009825.pub3


99.
Verbeek J, Hoving J, Boschman J, Chong LY, Livingstone-Banks J, Bero L. Systematic reviews should consider effects from both the population and the individual perspective. Am J Public Health 2021; 111(5): 820–5. doi: 10.2105/AJPH.2020.306147
Published
2023-05-30
How to Cite
Thorisdottir B., Arnesen E. K., Bärebring L., Dierkes J., Lamberg-Allardt C., Ramel A., Nwaru B. I., Söderlund F., & Åkesson A. (2023). Legume consumption in adults and risk of cardiovascular disease and type 2 diabetes: a systematic review and meta-analysis. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.9541
Section
Nordic Nutrition Recommendations

Most read articles by the same author(s)