Nuts and seeds consumption and risk of cardiovascular disease, type 2 diabetes and their risk factors: a systematic review and meta-analysis

  • Erik Kristoffer Arnesen Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
  • Birna Thorisdottir Health Science Institute, University of Iceland, Reykjavik, Iceland
  • Linnea Bärebring Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
  • Fredrik Söderlund Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
  • Bright I. Nwaru Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
  • Ulrike Spielau Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway; and Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
  • Jutta Dierkes Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
  • Alfons Ramel Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
  • Christel Lamberg-Allardt Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
  • Agneta Åkesson Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
Keywords: nuts, cardiovascular disease, atherosclerosis, diabetes mellitus type 2, systematic review, meta-analysis

Abstract

Objectives: We aimed to systematically review studies and evaluate the strength of the evidence on nuts/seeds consumption and cardiometabolic diseases and their risk factors among adults.

Methods: A protocol was pre-registered in PROSPERO (CRD42021270554). We searched MEDLINE, Embase, Cochrane Central Register of Controlled Trials and Scopus up to September 20, 2021 for prospective cohort studies and ≥12-week randomized controlled trials (RCTs). Main outcomes were cardiovascular disease (CVD), coronary heart disease (CHD), stroke and type 2 diabetes (T2D), secondary total-/low density lipoprotein (LDL)-cholesterol, blood pressure and glycaemic markers. Data extraction and risk of bias (RoB) assessments (using RoB 2.0 and RoB-NObS) were performed in duplicate. Effect sizes were pooled using random-effects meta-analyses and expressed as relative risk (RR) or weighted mean differences with 95% confidence intervals (CI); heterogeneity quantified as I2. One-stage dose-response analyses assessed the linear and non-linear associations with CVD, CHD, stroke and T2D. The strength of evidence was classified per the World Cancer Research Fund criteria.

Results: After screening 23,244 references, we included 42 papers from cohort studies (28 unique cohorts, 1,890,573 participants) and 18 RCTs (2,266 participants). In the cohorts, mainly populations with low consumption, high versus low total nuts/seeds consumption was inversely associated with total CVD (RR 0.81; 95% CI 0.75, 0.86; I2 = 67%), CVD mortality (0.77; 0.72, 0.82; I2 = 59.3%), CHD (0.82; 0.76, 0.89; I2 = 64%), CHD mortality (0.75; 0.65, 0.87; I2 = 66.9%) and non-fatal CHD (0.85; 0.75, 0.96; I2 = 62.2%). According to the non-linear dose-response analyses, consumption of 30 g/day of total nuts/seeds was associated with RRs of similar magnitude. For stroke and T2D the summary RR for high versus low intake was 0.91 (95% CI 0.85, 0.97; I2 = 24.8%) and 0.95 (0.75, 1.21; I2 = 82.2%). Intake of nuts (median ~50 g/day) lowered total (−0.15 mmol/L; −0.22, −0.08; I2 = 31.2%) and LDL-cholesterol (−0.13 mmol/L; −0.21, −0.05; I2 = 68.6%), but not blood pressure. Findings on fasting glucose, HbA1c and insulin resistance were conflicting. The results were robust to sensitivity and subgroup analyses. We rated the associations between nuts/seeds and both CVD and CHD as probable. There was limited but suggestive evidence for no association with stroke. No conclusion could be made for T2D.

Conclusion: There is a probable relationship between consumption of nuts/seeds and lower risk of CVD, mostly driven by CHD, possibly in part through effects on blood lipids. More research on stroke and T2D may affect the conclusions. The evidence of specific nuts should be further investigated.

Downloads

Download data is not yet available.

References


1.
World Health Organization/Food and Agriculture Organization. Diet, nutrition and the prevention of chronic diseases: Report of a Joint WHO/FAO Expert Consultation. Geneva: World Health Organization; 2003.


2.
Herforth A, Arimond M, Alvarez-Sanchez C, Coates J, Christianson K, Muehlhoff E. A global review of food-based dietary guidelines. Adv Nutr 2019; 10(4): 590–605. doi: 10.1093/advances/nmy130


3.
U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary guidelines for Americans, 2020–2025. Washington, DC: USDA; 2020. [cited 01 June 2022]. Available from: www.DietaryGuidelines.gov


4.
Mithril C, Dragsted LO, Meyer C, Tetens I, Biltoft-Jensen A, Astrup A. Dietary composition and nutrient content of the New Nordic Diet. Public Health Nutr 2013; 16(5): 777–85. doi: 10.1017/S1368980012004521


5.
Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014; 129(25 Suppl 2): S76–99. doi: 10.1161/01.cir.0000437740.48606.d1


6.
Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41(1): 111–88. doi: 10.1093/eurheartj/ehz455


7.
GBD Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1223–49. doi: 10.1016/S0140-6736(20)30752-2


8.
GBD Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019; 393(10184): 1958–72. doi: 10.1016/S0140-6736(19)30041-8


9.
Micha R, Khatibzadeh S, Shi P, Andrews KG, Engell RE, Mozaffarian D, et al. Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 2015; 5(9): e008705. doi: 10.1136/bmjopen-2015-008705


10.
Fraser GE, Sabate J, Beeson WL, Strahan TM. A possible protective effect of nut consumption on risk of coronary heart disease. The Adventist Health Study. Arch Intern Med 1992; 152(7): 1416–24. doi: 10.1001/archinte.152.7.1416


11.
Abbey M, Noakes M, Belling GB, Nestel PJ. Partial replacement of saturated fatty acids with almonds or walnuts lowers total plasma cholesterol and low-density-lipoprotein cholesterol. Am J Clin Nutr 1994; 59(5): 995–9. doi: 10.1093/ajcn/59.5.995


12.
Sabate J, Fraser GE, Burke K, Knutsen SF, Bennett H, Lindsted KD. Effects of walnuts on serum lipid levels and blood pressure in normal men. N Engl J Med 1993; 328(9): 603–7. doi: 10.1056/NEJM199303043280902


13.
Ellsworth JL, Kushi LH, Folsom AR. Frequent nut intake and risk of death from coronary heart disease and all causes in postmenopausal women: the Iowa Women’s Health Study. Nutr Metab Cardiovasc Dis 2001; 11(6): 372–7.


14.
Hu FB, Stampfer MJ, Manson JE, Rimm EB, Colditz GA, Rosner BA, et al. Frequent nut consumption and risk of coronary heart disease in women: prospective cohort study. BMJ 1998; 317(7169): 1341–5. doi: 10.1136/bmj.317.7169.1341


15.
EFSA Panel on Dietetic Products Nutrition and Allergies. Scientific Opinion on the substantiation of health claims related to walnuts and maintenance of normal blood LDL-cholesterol concentrations (ID 1156, 1158) and improvement of endothelium-dependent vasodilation (ID 1155, 1157) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2011; 9(4): 2074. doi: 10.2903/j.efsa.2011.2074


16.
Baghery F, Mohammadifard N, Khanamani Falahati-Pour S. The effect of pistachio supplementation on metabolic syndrome and its components in adults: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2022; 80(10): 2051–63. doi: 10.1093/nutrit/nuac027


17.
Becerra-Tomas N, Paz-Graniel I, Kendall CWC, Kahleova H, Rahelic D, Sievenpiper JL, et al. Nut consumption and incidence of cardiovascular diseases and cardiovascular disease mortality: a meta-analysis of prospective cohort studies. Nutr Rev 2019; 77(10): 691–709. doi: 10.1093/nutrit/nuz042


18.
Becerra-Tomas N, Paz-Graniel I, Hernandez-Alonso P, Jenkins DJA, Kendall CWC, Sievenpiper JL, et al. Nut consumption and type 2 diabetes risk: a systematic review and meta-analysis of observational studies. Am J Clin Nutr 2021; 113(4): 960–71. doi: 10.1093/ajcn/nqaa358


19.
Bechthold A, Boeing H, Schwedhelm C, Hoffmann G, Knuppel S, Iqbal K, et al. Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit Rev Food Sci Nutr 2019; 59(7): 1071–90. doi: 10.1080/10408398.2017.1392288


20.
Kim Y, Keogh J, Clifton PM. Nuts and cardio-metabolic disease: a review of meta-analyses. Nutrients 2018; 10(12): 1935. doi: 10.3390/nu10121935


21.
Kim Y, Keogh JB, Clifton PM. Does nut consumption reduce mortality and/or risk of cardiometabolic disease? An updated review based on meta-analyses. Int J Environ Res Public Health 2019; 16(24): 4957. doi: 10.3390/ijerph16244957


22.
Li J, Jiang B, Santos HO, Santos D, Singh A, Wang L. Effects of walnut intake on blood pressure: a systematic review and meta-analysis of randomized controlled trials. Phytother Res 2020; 34(11): 2921–31. doi: 10.1002/ptr.6740


23.
Tindall AM, Johnston EA, Kris-Etherton PM, Petersen KS. The effect of nuts on markers of glycemic control: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2019; 109(2): 297–314. doi: 10.1093/ajcn/nqy236


24.
Schwingshackl L, Hoffmann G, Iqbal K, Schwedhelm C, Boeing H. Food groups and intermediate disease markers: a systematic review and network meta-analysis of randomized trials. Am J Clin Nutr 2018; 108(3): 576–86. doi: 10.1093/ajcn/nqy151


25.
Schwingshackl L, Hoffmann G, Lampousi AM, Knuppel S, Iqbal K, Schwedhelm C, et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 2017; 32(5): 363–75. doi: 10.1007/s10654-017-0246-y


26.
Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008; 336(7650): 924–6. doi: 10.1136/bmj.39489.470347.AD


27.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic Nutrition Recommendations 2022 – principles and methodologies. Food Nutr Res 2020; 64: 4402. doi: 10.29219/fnr.v64.4402


28.
Hoyer A, Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, et al. The Nordic Nutrition Recommendations 2022 – prioritisation of topics for de novo systematic reviews. Food Nutr Res 2021; 65:7828. doi: 10.29219/fnr.v65.7828


29.
George ES, Daly RM, Tey SL, Brown R, Wong THT, Tan SY. Perspective: Is it time to expand research on “nuts” to include “seeds”? Justifications and key considerations. Adv Nutr 2022; 13(4): 1016–27. doi: 10.1093/advances/nmac028


30.
Arnesen EK, Christensen JJ, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic Nutrition Recommendations 2022 – Handbook for systematic reviews. Food Nutr Res 2020; 64: 4404. doi: 10.29219/fnr.v64.4404


31.
Arnesen EK, Christensen JJ, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic Nutrition Recommendations 2022 – structure and rationale of systematic reviews. Food Nutr Res 2020; 64: 4403. doi: 10.29219/fnr.v64.4403


32.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71. doi: 10.1136/bmj.n71


33.
Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021; 372: n160. doi: 10.1136/bmj.n160


34.
Gulati S, Misra A, Pandey RM, Bhatt SP, Saluja S. Effects of pistachio nuts on body composition, metabolic, inflammatory and oxidative stress parameters in Asian Indians with metabolic syndrome: a 24-wk, randomized control trial. Nutrition 2014; 30(2): 192–7. doi: 10.1016/j.nut.2013.08.005


35.
Haring B, Gronroos N, Nettleton JA, Wyler Von Ballmoos MC, Selvin E, Alonso A. Dietary protein intake and coronary heart disease in a large community based cohor: results from the Atherosclerosis Risk in Communities (ARIC) study. PLoS One. 2014: 9(10); e109552. doi: 10.1371/journal.pone.0109552


36.
Tong TYN, Appleby PN, Key TJ, Dahm CC, Overvad K, Olsen A, et al. The associations of major foods and fibre with risks of ischaemic and haemorrhagic stroke: a prospective study of 418 329 participants in the EPIC cohort across nine European countries. Eur Heart J 2020; 41(28): 2632–40. doi: 10.1093/eurheartj/ehaa007


37.
Sun Y, Liu B, Snetselaar LG, Wallace RB, Shadyab AH, Kroenke CH, et al. Association of major dietary protein sources with all-cause and cause-specific mortality: prospective cohort study. J Am Heart Assoc. 2021; 10(5): 1–24. doi: 10.1161/JAHA.119.015553


38.
Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366: l4898. doi: 10.1136/bmj.l4898


39.
Schünemann HJ, Cuello C, Akl EA, Mustafa RA, Meerpohl JJ, Thayer K, et al. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. J Clin Epidemiol 2019; 111: 105–14. doi: 10.1016/j.jclinepi.2018.01.012


40.
Sterne JAC, Hernan MA, McAleenan A, Reeves BC, Higgins JPT. Assessing risk of bias in a non-randomized study. 2022. In: Cochrane handbook for systematic reviews of interventions version 6.3. Cochrane. [cited 22 July 2022]. Available from: www.training.cochrane.org/handbook


41.
Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester: John Wiley & Sons; 2009.


42.
Guasch-Ferre M, Liu X, Malik VS, Sun Q, Willett WC, Manson JE, et al. Nut consumption and risk of cardiovascular disease. J Am Coll Cardiol 2017; 70(20): 2519–32. doi: 10.1016/j.jacc.2017.09.035


43.
Luu HN, Blot WJ, Xiang YB, Cai H, Hargreaves MK, Li H, et al. Prospective evaluation of the association of nut/peanut consumption with total and cause-specific mortality. JAMA Intern Med 2015; 175(5): 755–66. doi: 10.1001/jamainternmed.2014.8347


44.
Yamakawa M, Wada K, Koda S, Uji T, Nakashima Y, Onuma S, et al. Associations of total nut and peanut intakes with all-cause and cause-specific mortality in a Japanese community: the Takayama study. Br J Nutr 2021; 127(9): 1378–85. doi: 10.1017/S0007114521002257


45.
Asghari G, Ghorbani Z, Mirmiran P, Azizi F. Nut consumption is associated with lower incidence of type 2 diabetes: The Tehran Lipid and Glucose Study. Diabetes Metab 2017; 43(1): 18–24. doi: 10.1016/j.diabet.2016.09.008


46.
VanderWeele TJ. On a square-root transformation of the odds ratio for a common outcome. Epidemiology 2017; 28(6): e58–60. doi: 10.1097/EDE.0000000000000733


47.
Symons MJ, Moore DT. Hazard rate ratio and prospective epidemiological studies. J Clin Epidemiol 2002; 55(9): 893–9. doi: 10.1016/s0895-4356(02)00443-2


48.
Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 1992; 135(11): 1301–9. doi: 10.1093/oxfordjournals.aje.a116237


49.
Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 2012; 175(1): 66–73. doi: 10.1093/aje/kwr265


50.
Brown R, Gray AR, Chua MG, Ware L, Chisholm A, Tey SL. Is a handful an effective way to guide nut recommendations? Int J Environ Res Public Health 2021; 18(15): 7812. doi: 10.3390/ijerph18157812


51.
Norwegian Food Safety Authority. Norwegian Food Composition Database 2021: Norwegian food safety authority; 2021 [updated 15 December 2021]. Available from: https://www.matvaretabellen.no/ [cited 01 August 2022].


52.
Hamling J, Lee P, Weitkunat R, Ambühl M. Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med. 2008; 27(7): 954–70. doi: 10.1002/sim.3013


53.
Greenland S. Quantitative methods in the review of epidemiologic literature. Epidemiol Rev 1987; 9: 1–30. doi: 10.1093/oxfordjournals.epirev.a036298


54.
Aune D, Greenwood DC, Chan DSM, Vieira R, Vieira AR, Navarro Rosenblatt DA, et al. Body mass index, abdominal fatness and pancreatic cancer risk: a systematic review and non-linear dose–response meta-analysis of prospective studies. Ann Oncol 2012; 23(4): 843–52. doi: 10.1093/annonc/mdr398


55.
Crippa A, Discacciati A, Bottai M, Spiegelman D, Orsini N. One-stage dose-response meta-analysis for aggregated data. Stat Methods Med Res 2019; 28(5): 1579–96. doi: 10.1177/0962280218773122


56.
Vinceti M, Filippini T, Malavolti M, Naska A, Kasdagli MI, Torres D, et al. Dose‐response relationships in health risk assessment of nutritional and toxicological factors in foods: development and application of novel biostatistical methods. EFSA Support Publ 2020; 17(7): 1899E. doi: 10.2903/sp.efsa.2020.EN-1899


57.
Harrell FE. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis. 2nd ed. Cham: Springer International Publishing; 2015.


58.
da Costa BR, Nüesch E, Rutjes AW, Johnston BC, Reichenbach S, Trelle S, et al. Combining follow-up and change data is valid in meta-analyses of continuous outcomes: a meta-epidemiological study. J Clin Epidemiol 2013; 66(8): 847–55. doi: 10.1016/j.jclinepi.2013.03.009


59.
Deeks JJ, Higgins JPT, Altman DG. Analysing data and undertaking meta-analyses. In: Cochrane handbook for systematic reviews of interventions version 6.3. Cochrane; 2022. [cited 01 June 2022]. Available from: www.training.cochrane.org/handbook


60.
Higgins JPT, Li T, Deeks JJ. Choosing effect measures and computing estimates of effect. In: Cochrane handbook for systematic reviews of interventions version 6.3. Cochrane; 2022. [cited 01 June 2022]. Available from: www.training.cochrane.org/handbook


61.
McKenzie JE, Herbison GP, Deeks JJ. Impact of analysing continuous outcomes using final values, change scores and analysis of covariance on the performance of meta‐analytic methods: a simulation study. Res Synthesis Methods 2015; 7(4): 371–86. doi: 10.1002/jrsm.1196


62.
Morton SC, Murad MH, O’Connor E, Lee CS, Booth M, Vandermeer BW, et al. Quantitative synthesis – An update. Methods guide for effectiveness and comparative effectiveness reviews. AHRQ methods for effective health care. Rockville, MD: AHRQ; 2018.


63.
Balk EM, Earley A, Patel K, Trikalinos TA, Dahabreh IJ. Empirical assessment of within-arm correlation imputation in trials of continuous outcomes. AHRQ Methods for Effective Health Care. Rockville, MD: AHRQ; 2012.


64.
Higgins JPT, Eldridge S, Li T. Including variants on randomized trials. In: Cochrane handbook for systematic reviews of interventions version 6.3. Cochrane; 2022. [cited 01 June 2022]. Available from: www.training.cochrane.org/handbook


65.
Page MJ, Higgins JPT, Sterne JAC. Assessing risk of bias due to missing results in a synthesis. In: Cochrane handbook for systematic reviews of interventions version 6.3. Cochrane; 2022. [cited 01 June 2022]. Available from: www.training.cochrane.org/handbook


66.
Fraser GE. Associations between diet and cancer, ischemic heart disease, and all-cause mortality in non-Hispanic white California Seventh-day Adventists. Am J Clin Nutr. 1999;70(3 Suppl):532S–8S. doi: 10.1093/ajcn/70.3.532s


67.
Kushi LH, Fee RM, Sellers TA, Zheng W, Folsom AR. Intake of vitamins A, C, and E and postmenopausal breast cancer. The Iowa Women’s Health Study. Am J Epidemiol 1996; 144(2): 165–74. doi: 10.1093/oxfordjournals.aje.a008904


68.
Parker ED, Harnack LJ, Folsom AR. Nut consumption and risk of type 2 diabetes. JAMA 2003; 290(1): 38–9; author reply 9–40. doi: 10.1001/jama.290.1.38


69.
Toledo E, Hu FB, Estruch R, Buil-Cosiales P, Corella D, Salas-Salvado J, et al. Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: results from a randomized controlled trial. BMC Med 2013; 11(1). doi: 10.1186/1741-7015-11-207


70.
Villegas R, Gao YT, Yang G, Li HL, Elasy TA, Zheng W, et al. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai women’s health study. Am J Clin Nutr 2008; 87(1): 162–7. doi: 10.1093/ajcn/87.1.162


71.
von Ruesten A, Feller S, Bergmann MM, Boeing H. Diet and risk of chronic diseases: results from the first 8 years of follow-up in the EPIC-Potsdam study. Eur J Clin Nutr 2013; 67(4): 412–9. doi: 10.1038/ejcn.2013.7


72.
Yaemsiri S, Sen S, Tinker L, Rosamond W, Wassertheil-Smoller S, He K. Trans fat, aspirin, and ischemic stroke in postmenopausal women. Ann Neurol 2012; 72(5): 704–15. doi: 10.1002/ana.23555


73.
Al-Shaar L, Satija A, Wang DD, Rimm EB, Smith-Warner SA, Stampfer MJ, et al. Red meat intake and risk of coronary heart disease among US men: prospective cohort study. BMJ. 2020; 371: m4141. doi: 10.1136/bmj.m4141


74.
Albert CM, Gaziano JM, Willett WC, Manson JE. Nut consumption and decreased risk of sudden cardiac death in the Physicians’ Health Study. Arch Intern Med 2002; 162(12): 1382–7. doi: 10.1001/archinte.162.12.1382


75.
Amba V, Murphy G, Etemadi A, Wang S, Abnet CC, Hashemian M. Nut and peanut butter consumption and mortality in the National Institutes of Health-AARP Diet and Health Study. Nutrients 2019; 11(7): 1508. doi: 10.3390/nu11071508


76.
Bernstein AM, Sun Q, Hu FB, Stampfer MJ, Manson JE, Willett WC. Major dietary protein sources and risk of coronary heart disease in women. Circulation 2010; 122(9): 876–83. doi: 10.1161/CIRCULATIONAHA.109.915165


77.
Bernstein AM, Pan A, Rexrode KM, Stampfer M, Hu FB, Mozaffarian D, et al. Dietary protein sources and the risk of stroke in men and women. Stroke 2012; 43(3): 637–44. doi: 10.1161/STROKEAHA.111.633404


78.
Blomhoff R, Carlsen MH, Andersen LF, Jacobs DR Jr. Health benefits of nuts: potential role of antioxidants. Br J Nutr 2006;96(Suppl 2): S52–S60. doi: 10.1017/bjn20061864


79.
Bonaccio M, Di Castelnuovo A, De Curtis A, Costanzo S, Bracone F, Persichillo M, et al. Nut consumption is inversely associated with both cancer and total mortality in a Mediterranean population: prospective results from the Moli-sani study. Br J Nutr 2015; 114(5): 804–11. doi: 10.1017/S0007114515002378


80.
Gopinath B, Flood VM, Burlutksy G, Mitchell P. Consumption of nuts and risk of total and cause-specific mortality over 15 years. Nutr Metab Cardiovasc Dis 2015; 25(12): 1125–31. doi: 10.1016/j.numecd.2015.09.006


81.
Eslamparast T, Sharafkhah M, Poustchi H, Hashemian M, Dawsey SM, Freedman ND, et al. Nut consumption and total and cause-specific mortality: results from the Golestan Cohort Study. Int J Epidemiol 2017; 46(1): 75–85. doi: 10.1093/ije/dyv365


82.
Di Giuseppe R, Fjeld MK, Dierkes J, Theoflylaktopoulou D, Arregui M, Boeing H, et al. The association between nut consumption and the risk of total and ischemic stroke in a German cohort study. Eur J Clin Nutr 2015; 69(4): 431–5. doi: 10.1038/ejcn.2014.212


83.
Djousse L, Gaziano JM, Kase CS, Kurth T. Nut consumption and risk of stroke in US male physicians. Clin Nutr 2010; 29(5): 605–9. doi: 10.1016/j.clnu.2010.03.005


84.
Guasch-Ferré M, Bulló M, Martínez-González M, Ros E, Corella D, Estruch R, et al. Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Med 2013; 11: 164. doi: 10.1186/1741-7015-11-164


85.
Haring B, Misialek JR, Rebholz CM, Petruski-Ivleva N, Gottesman RF, Mosley TH, et al. Association of dietary protein consumption with incident silent cerebral infarcts and stroke: the Atherosclerosis Risk in Communities (ARIC) study. Stroke 2015; 46(12): 3443–50. doi: 10.1161/STROKEAHA.115.010693


86.
Hshieh TT, Petrone AB, Gaziano JM, Djousse L. Nut consumption and risk of mortality in the physicians’ health study. Am J Clin Nutr 2015; 101(2): 407–12. doi: 10.3945/ajcn.114.099846


87.
Ikehara S, Iso H, Kokubo Y, Yamagishi K, Saito I, Yatsuya H, et al. Peanut consumption and risk of stroke and ischemic heart disease in Japanese men and women: The JPHC study. Stroke 2021; 52: 3543–3550. doi: 10.1161/STROKEAHA.120.031212


88.
Imran TF, Kim E, Buring JE, Lee IM, Gaziano JM, Djousse L. Nut consumption, risk of cardiovascular mortality, and potential mediating mechanisms: the Women’s Health Study. J Clin Lipidol 2021; 15(2): 266–74. doi: 10.1016/j.jacl.2021.01.001


89.
Ivey KL, Nguyen XMT, Quaden RM, Ho YL, Cho K, Michael Gaziano J, et al. Association of nut consumption with risk of stroke and cardiovascular disease: the million veteran program. Nutrients 2021; 13(9): 3031. doi: 10.3390/nu13093031


90.
Kochar J, Gaziano JM, Djousse L. Nut consumption and risk of type II diabetes in the Physicians Health Study. Eur J Clin Nutr 2010; 64(1): 75–9. doi: 10.1038/ejcn.2009.121


91.
Larsson SC, Drca N, Bjorck M, Back M, Wolk A. Nut consumption and incidence of seven cardiovascular diseases. Heart 2018; 104: 1615–20. doi: 10.1136/heartjnl-2017-312819


92.
Liu X, Guasch-Ferre M, Tobias DK, Li Y. Association of walnut consumption with total and cause-specific mortality and life expectancy in U.S. adults. Nutrients 2021; 13(8): 2699. doi: 10.3390/nu13082699


93.
Mohammadifard N, Ghaderian N, Hassannejad R, Sajjadi F, Sadeghi M, Roohafza H, et al. Longitudinal association of nut consumption and the risk of cardiovascular events: a prospective cohort study in the Eastern Mediterranean Region. Front Nutr 2020; 7: 610467. doi: 10.3389/fnut.2020.610467


94.
Pan A, Sun Q, Manson JE, Willett WC, Hu FB. Walnut consumption is associated with lower risk of type 2 diabetes in women. J Nutr 2013;143(4): 512–8. doi: 10.3945/jn.112.172171


95.
Perez-Cornago A, Crowe FL, Appleby PN, Bradbury KE, Wood AM, Jakobsen MU, et al. Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Int J Epidemiol 2021; 50(1): 212–22. doi: 10.1093/ije/dyaa155


96.
de Souza RJ, Dehghan M, Mente A, Bangdiwala SI, Ahmed SH, Alhabib KF, et al. Association of nut intake with risk factors, cardiovascular disease, and mortality in 16 countries from 5 continents: analysis from the Prospective Urban and Rural Epidemiology (PURE) study. Am J Clin Nutr 2020; 112(1): 208–19. doi: 10.1093/ajcn/nqaa108


97.
van den Brandt PA, Schouten LJ. Relationship of tree nut, peanut and peanut butter intake with total and cause-specific mortality: a cohort study and meta-analysis. Int J Epidemiol 2015; 44(3): 1038–49. doi: 10.1093/ije/dyv039


98.
van den Brandt PA. Red meat, processed meat, and other dietary protein sources and risk of overall and cause-specific mortality in The Netherlands Cohort Study. Eur J Epidemiol 2019; 34(4): 351–69. doi: 10.1007/s10654-019-00483-9


99.
Wang JB, Fan JH, Dawsey SM, Sinha R, Freedman ND, Taylor PR, et al. Dietary components and risk of total, cancer and cardiovascular disease mortality in the Linxian Nutrition Intervention Trials cohort in China. Sci Rep 2016; 6: 22619. doi: 10.1038/srep22619


100.
Wurtz AML, Jakobsen MU, Bertoia ML, Hou T, Schmidt EB, Willett WC, et al. Replacing the consumption of red meat with other major dietary protein sources and risk of type 2 diabetes mellitus: a prospective cohort study. Am J Clin Nutr 2021; 113(3): 612–21. doi: 10.1093/ajcn/nqaa284


101.
Buijsse B, Boeing H, Drogan D, Schulze MB, Feskens EJ, Amiano P, et al. Consumption of fatty foods and incident type 2 diabetes in populations from eight European countries. Eur J Clin Nutr 2015; 69(4): 455–61. doi: 10.1038/ejcn.2014.249


102.
Ibsen DB, Steur M, Imamura F, Overvad K, Schulze MB, Bendinelli B, et al. Replacement of red and processed meat with other food sources of protein and the risk of type 2 diabetes in European populations: the epic-interact study. Diabetes Care 2020; 43(11): 2660–7. doi: 10.2337/dc20-1038


103.
Al Abdrabalnabi A, Rajaram S, Bitok E, Oda K, Beeson WL, Kaur A, et al. Effects of supplementing the usual diet with a daily dose of walnuts for two years on metabolic syndrome and its components in an elderly cohort. Nutrients 2020; 12(2): 451. doi: 10.3390/nu12020451


104.
Barbour JA, Howe PR, Buckley JD, Bryan J, Coates AM. Effect of 12 weeks high oleic peanut consumption on cardio-metabolic risk factors and body composition. Nutrients 2015; 7(9): 7381–98. doi: 10.3390/nu7095343


105.
Bashan I, Bakman M. The effect of daily walnut consumption on dyslipidemia. J Food Qual 2018; 2018: 4731826. doi: 10.1155/2018/4731826


106.
Casas-Agustench P, Lopez-Uriarte P, Bullo M, Ros E, Cabre-Vila JJ, Salas-Salvado J. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr Metab Cardiovasc Dis 2011; 21(2): 126–35. doi: 10.1016/j.numecd.2009.08.005


107.
Coates AM, Morgillo S, Yandell C, Scholey A, Buckley JD, Dyer KA, et al. Effect of a 12-week almond-enriched diet on biomarkers of cognitive performance, mood, and cardiometabolic health in older overweight adults. Nutrients 2020; 12(4): 1180. doi: 10.3390/nu12041180


108.
Hernandez-Alonso P, Salas-Salvado J, Baldrich-Mora M, Juanola-Falgarona M, Bullo M. Beneficial effect of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: a randomized clinical trial. Diabetes Care 2014; 37(11): 3098–105. doi: 10.2337/dc14-1431


109.
Hunter SR, Considine RV, Mattes RD. Almond consumption decreases android fat mass percentage in adults with high android subcutaneous adiposity but does not change HbA1c in a randomized controlled trial. Br J Nutr 2021; 127(6): 850–61. doi: 10.1017/S0007114521001495


110.
Hwang HJ, Liu Y, Kim HS, Lee H, Lim Y, Park H. Daily walnut intake improves metabolic syndrome status and increases circulating adiponectin levels: randomized controlled crossover trial. Nutr Res Pract 2019; 13(2): 105–14. doi: 10.4162/nrp.2019.13.2.105


111.
Kasliwal RR, Bansal M, Mehrotra R, Yeptho KP, Trehan N. Effect of pistachio nut consumption on endothelial function and arterial stiffness. Nutrition 2015; 31(5): 678–85. doi: 10.1016/j.nut.2014.10.019


112.
Liu Y, Hwang HJ, Kim HS, Park H. Time and intervention effects of daily almond intake on the changes of lipid profile and body composition among free-living healthy adults. J Med Food2018; 21(4): 340–7. doi: 10.1089/jmf.2017.3976


113.
Madan J, Desai S, Moitra P, Salis S, Agashe S, Battalwar R, et al. Effect of almond consumption on metabolic risk factors-glucose metabolism, hyperinsulinemia, selected markers of inflammation: a randomized controlled trial in adolescents and young adults. Front Nutr. 2021; 8: 668622. doi: 10.3389/fnut.2021.668622


114.
Njike VY, Ayettey R, Petraro P, Treu JA, Katz DL. Walnut ingestion in adults at risk for diabetes: effects on body composition, diet quality, and cardiac risk measures. BMJ Open Diabet Res Care 2015; 3(1): e000115. doi: 10.1136/bmjdrc-2015-000115


115.
Tey SL, Gray AR, Chisholm AW, Delahunty CM, Brown RC. The dose of hazelnuts influences acceptance and diet quality but not inflammatory markers and body composition in overweight and obese individuals. J Nutr 2013; 143(8): 1254–62. doi: 10.3945/jn.113.174714


116.
Torabian S, Haddad E, Cordero-Macintyre Z, Tanzman J, Fernandez ML, Sabate J. Long-term walnut supplementation without dietary advice induces favorable serum lipid changes in free-living individuals. Eur J Clin Nutr 2010; 64(3): 274–9. doi: 10.1038/ejcn.2009.152


117.
Wang D, Sun L, Liu X, Niu Z, Chen S, Tang L, et al. Replacing white rice bars with peanuts as snacks in the habitual diet improves metabolic syndrome risk among Chinese adults: a randomized controlled trial. Am J Clin Nutr 2021; 113(1): 28–35. doi: 10.1093/ajcn/nqaa307


118.
Wang J, Wang S, Henning SM, Qin T, Pan Y, Yang J, et al. Mixed tree nut snacks compared to refined carbohydrate snacks resulted in weight loss and increased satiety during both weight loss and weight maintenance: a 24-week randomized controlled trial. Nutrients 2021; 13(5): 1512. doi: 10.3390/nu13051512


119.
Wang X, Li Z, Liu Y, Lv X, Yang W. Effects of pistachios on body weight in Chinese subjects with metabolic syndrome. Nutr J 2012; 11(1): 20. doi: 10.1186/1475-2891-11-20


120.
Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 2018; 378(25): e24. doi: 10.1056/NEJMoa1800389


121.
Salas-Salvado J, Bullo M, Estruch R, Ros E, Covas MI, Ibarrola-Jurado N, et al. Prevention of diabetes with Mediterranean diets: a subgroup analysis of a randomized trial. Ann Intern Med 2014; 160(1): 1–10. doi: 10.7326/M13-1725


122.
Martinez-Gonzalez MA, Gea A, Ruiz-Canela M. The Mediterranean diet and cardiovascular health. Circ Res 2019; 124(5): 779–98. doi: 10.1161/CIRCRESAHA.118.313348


123.
Zeraatkar D, Bhasin A, Morassut RE, Churchill I, Gupta A, Lawson DO, et al. Characteristics and quality of systematic reviews and meta-analyses of observational nutritional epidemiology: a cross-sectional study. Am J Clin Nutr 2021; 113(6): 1578–92. doi: 10.1093/ajcn/nqab002


124.
Geissbuhler M, Hincapie CA, Aghlmandi S, Zwahlen M, Juni P, da Costa BR. Most published meta-regression analyses based on aggregate data suffer from methodological pitfalls: a meta-epidemiological study. BMC Med Res Methodol 2021; 21(1): 123. doi: 10.1186/s12874-021-01310-0


125.
Martin N, Germano R, Hartley L, Adler AJ, Rees K. Nut consumption for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2015; 9: CD011583. doi: 10.1002/14651858.CD011583.pub2


126.
O’Neil CE, Nicklas TA, Fulgoni VL 3rd. Tree nut consumption is associated with better nutrient adequacy and diet quality in adults: National Health and Nutrition Examination Survey 2005–2010. Nutrients 2015; 7(1): 595–607. doi: 10.3390/nu7010595


127.
Dikariyanto V, Berry SE, Pot GK, Francis L, Smith L, Hall WL. Tree nut snack consumption is associated with better diet quality and CVD risk in the UK adult population: National Diet and Nutrition Survey (NDNS) 2008–2014. Public Health Nutr 2020; 23(17): 3160–9. doi: 10.1017/S1368980019003914


128.
Neale EP, Tapsell LC, Martin A, Batterham MJ, Wibisono C, Probst YC. Impact of providing walnut samples in a lifestyle intervention for weight loss: a secondary analysis of the HealthTrack trial. Food Nutr Res 2017; 61(1): 1344522. doi: 10.1080/16546628.2017.1344522


129.
Fantino M, Bichard C, Mistretta F, Bellisle F. Daily consumption of pistachios over 12 weeks improves dietary profile without increasing body weight in healthy women: a randomized controlled intervention. Appetite 2020; 144: 104483. doi: 10.1016/j.appet.2019.104483


130.
Nishi SK, Viguiliouk E, Blanco Mejia S, Kendall CWC, Bazinet RP, Hanley AJ, et al. Are fatty nuts a weighty concern? A systematic review and meta-analysis and dose-response meta-regression of prospective cohorts and randomized controlled trials. Obes Rev 2021; 22(11): e13330. doi: 10.1111/obr.13330


131.
Tan SY, Dhillon J, Mattes RD. A review of the effects of nuts on appetite, food intake, metabolism, and body weight. Am J Clin Nutr 2014;100(Suppl 1): 412S–22S. doi: 10.3945/ajcn.113.071456


132.
Mannsverk J, Wilsgaard T, Mathiesen EB, Lochen ML, Rasmussen K, Thelle DS, et al. Trends in modifiable risk factors are associated with declining incidence of hospitalized and nonhospitalized acute coronary heart disease in a population. Circulation 2016; 133(1): 74–81. doi: 10.1161/CIRCULATIONAHA.115.016960


133.
Bjorck L, Capewell S, O’Flaherty M, Lappas G, Bennett K, Rosengren A. Decline in coronary mortality in Sweden between 1986 and 2002: Comparing contributions from primary and secondary prevention. PLoS One. 2015; 10(5): e0124769. doi: 10.1371/journal.pone.0124769


134.
Jousilahti P, Laatikainen T, Peltonen M, Borodulin K, Mannisto S, Jula A, et al. Primary prevention and risk factor reduction in coronary heart disease mortality among working aged men and women in eastern Finland over 40 years: population based observational study. BMJ 2016; 352: i721. doi: 10.1136/bmj.i721


135.
Guasch-Ferre M, Li J, Hu FB, Salas-Salvado J, Tobias DK. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: an updated meta-analysis and systematic review of controlled trials. Am J Clin Nutr. 2018;108(1):174–87. doi: 10.1093/ajcn/nqy091


136.
Del Gobbo LC, Falk MC, Feldman R, Lewis K, Mozaffarian D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am J Clin Nutr 2015; 102(6): 1347–56. doi: 10.3945/ajcn.115.110965


137.
Lee-Bravatti MA, Wang J, Avendano EE, King L, Johnson EJ, Raman G. Almond Consumption and risk factors for cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr 2019; 10(6): 1076–88. doi: 10.1093/advances/nmz043


138.
Musa-Veloso K, Paulionis L, Poon T, Lee HY. The effects of almond consumption on fasting blood lipid levels: a systematic review and meta-analysis of randomised controlled trials. J Nutr Sci 2016; 5: E34. doi: 10.1017/jns.2016.19


139.
Ibsen DB, Laursen ASD, Wurtz AML, Dahm CC, Rimm EB, Parner ET, et al. Food substitution models for nutritional epidemiology. Am J Clin Nutr 2021; 113(2): 294–303. doi: 10.1093/ajcn/nqaa315


140.
Luo C, Zhang Y, Ding Y, Shan Z, Chen S, Yu M, et al. Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis. Am J Clin Nutr 2014; 100(1): 256–69. doi: 10.3945/ajcn.113.076109


141.
Zhou D, Yu H, He F, Reilly KH, Zhang J, Li S, et al. Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr 2014; 100(1): 270–7. doi: 10.3945/ajcn.113.079152


142.
Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr 2014; 100(1): 278–88. doi: 10.3945/ajcn.113.076901


143.
Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med 2016; 14(1): 207. doi: 10.1186/s12916-016-0730-3


144.
Mayhew AJ, de Souza RJ, Meyre D, Anand SS, Mente A. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality. Br J Nutr 2016; 115(2): 212–25. doi: 10.1017/S0007114515004316


145.
Chen GC, Zhang R, Martinez-Gonzalez MA, Zhang ZL, Bonaccio M, van Dam RM, et al. Nut consumption in relation to all-cause and cause-specific mortality: a meta-analysis 18 prospective studies. Food Funct 2017; 8(11): 3893–905. doi: 10.1039/c7fo00915a


146.
Liu K, Hui S, Wang B, Kaliannan K, Guo X, Liang L. Comparative effects of different types of tree nut consumption on blood lipids: a network meta-analysis of clinical trials. Am J Clin Nutr 2020; 111(1): 219–27. doi: 10.1093/ajcn/nqz280


147.
Mohammadifard N, Salehi-Abargouei A, Salas-Salvadó J, Guasch-Ferré M, Humphries K, Sarrafzadegan N. The effect of tree nut, peanut, and soy nut consumption on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. Am J Clin Nutr 2015; 101(5): 966–82. doi: 10.3945/ajcn.114.091595


148.
Ghanavati M, Rahmani J, Clark CCT, Hosseinabadi SM, Rahimlou M. Pistachios and cardiometabolic risk factors: a systematic review and meta-analysis of randomized controlled clinical trials. Complement Ther Med 2020; 52: 102513. doi: 10.1016/j.ctim.2020.102513


149.
Viguiliouk E, Kendall CW, Blanco Mejia S, Cozma AI, Ha V, Mirrahimi A, et al. Effect of tree nuts on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled dietary trials. PLoS One 2014; 9(7): e103376. doi: 10.1371/journal.pone.0103376


150.
Neale EP, Guan V, Tapsell LC, Probst YC. Effect of walnut consumption on markers of blood glucose control: a systematic review and meta-analysis. Br J Nutr 2020; 124(7): 641–53. doi: 10.1017/S0007114520001415


151.
Asbaghi O, Moodi V, Neisi A, Shirinbakhshmasoleh M, Abedi S, Oskouie FH, et al. The effect of almond intake on glycemic control: a systematic review and dose-response meta-analysis of randomized controlled trials. Phytother Res 2022; 36(1): 395–414. doi: 10.1002/ptr.7328


152.
Berryman CE, Preston AG, Karmally W, Deckelbaum RJ, Kris-Etherton PM. Effects of almond consumption on the reduction of LDL-cholesterol: a discussion of potential mechanisms and future research directions. Nutr Rev 2011; 69(4): 171–85. doi: 10.1111/j.1753-4887.2011.00383.x


153.
Coates AM, Hill AM, Tan SY. Nuts and cardiovascular disease prevention. Curr Atheroscler Rep 2018; 20(10): 48. doi: 10.1007/s11883-018-0749-3


154.
Ros E, Singh A, O’Keefe JH. Nuts: natural pleiotropic nutraceuticals. Nutrients 2021; 13(9): 3269. doi: 10.3390/nu13093269


155.
Kris-Etherton PM. Walnuts decrease risk of cardiovascular disease: a summary of efficacy and biologic mechanisms. J Nutr 2014; 144(4): 547S–54S. doi: 10.3945/jn.113.182907


156.
Phillips KM, Ruggio DM, Ashraf-Khorassani M. Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agric Food Chem 2005; 53(24): 9436–45. doi: 10.1021/jf051505h


157.
Del Gobbo LC, Falk MC, Feldman R, Lewis K, Mozaffarian D. Are phytosterols responsible for the low-density lipoprotein-lowering effects of tree nuts?: a systematic review and meta-analysis. J Am Coll Cardiol 2015; 65(25): 2765–7. doi: 10.1016/j.jacc.2015.03.595


158.
Neale EP, Tapsell LC, Guan V, Batterham MJ. The effect of nut consumption on markers of inflammation and endothelial function: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2017; 7(11): e016863. doi: 10.1136/bmjopen-2017-016863


159.
Smeets E, Mensink RP, Joris PJ. Effects of tree nut and groundnut consumption compared with those of l-arginine supplementation on fasting and postprandial flow-mediated vasodilation: meta-analysis of human randomized controlled trials. Clin Nutr 2021; 40(4): 1699–710. doi: 10.1016/j.clnu.2020.09.015


160.
Yu Z, Malik VS, Keum N, Hu FB, Giovannucci EL, Stampfer MJ, et al. Associations between nut consumption and inflammatory biomarkers. Am J Clin Nutr 2016; 104(3): 722–8. doi: 10.3945/ajcn.116.134205


161.
Schwingshackl L, Schwedhelm C, Hoffmann G, Knuppel S, Iqbal K, Andriolo V, et al. Food groups and risk of hypertension: a systematic review and dose-response meta-analysis of prospective studies. Adv Nutr 2017; 8(6): 793–803. doi: 10.3945/an.117.017178


162.
Jung S, Woo HW, Shin J, Kim YM, Shin MH, Koh SB, et al. Cumulative average nut consumption in relation to lower incidence of hypertension: a prospective cohort study of 10,347 adults. Eur J Nutr 2022; 61(3): 1571–83. doi: 10.1007/s00394-021-02743-5


163.
Hidayat K, Chen JS, Wang HP, Wang TC, Liu YJ, Zhang XY, et al. Is replacing red meat with other protein sources associated with lower risks of coronary heart disease and all-cause mortality? A meta-analysis of prospective studies. Nutr Rev 2022; 80(9): 1959–1973. doi: 10.1093/nutrit/nuac017


164.
Dai H, Much AA, Maor E, Asher E, Younis A, Xu Y, et al. Global, regional, and national burden of ischaemic heart disease and its attributable risk factors, 1990–2017: results from the Global Burden of Disease Study 2017. Eur Heart J Qual Care Clin Outcomes 2022; 8(1): 50–60. doi: 10.1093/ehjqcco/qcaa076


165.
Miller V, Micha R, Choi E, Karageorgou D, Webb P, Mozaffarian D. Evaluation of the quality of evidence of the association of foods and nutrients with cardiovascular disease and diabetes: a systematic review. JAMA Netw Open 2022; 5(2): e2146705. doi: 10.1001/jamanetworkopen.2021.46705


166.
Verbeek J, Hoving J, Boschman J, Chong LY, Livingstone-Banks J, Bero L. Systematic reviews should consider effects from both the population and the individual perspective. Am J Public Health 2021; 111(5): 820–5. doi: 10.2105/AJPH.2020.306147


167.
Eneroth H, Wallin S, Leander K, Nilsson Sommar J, Akesson A. Risks and benefits of increased nut consumption: cardiovascular health benefits outweigh the burden of carcinogenic effects attributed to aflatoxin B(1) exposure. Nutrients 2017; 9(12): 1355. doi: 10.3390/nu9121355
Published
2023-02-14
How to Cite
Arnesen E. K., Thorisdottir B., Bärebring L., Söderlund F., Nwaru B. I., Spielau U., Dierkes J., Ramel A., Lamberg-Allardt C., & Åkesson A. (2023). Nuts and seeds consumption and risk of cardiovascular disease, type 2 diabetes and their risk factors: a systematic review and meta-analysis. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.8961
Section
Nordic Nutrition Recommendations

Most read articles by the same author(s)