Ultra-processed foods – a scoping review for Nordic Nutrition Recommendations 2023

  • Filippa Juul School of Global Public Health, New York University, New York, USA
  • Elling Bere Department of Sports Science and Physical Education, University of Agder, Kristiansand, Norway
Keywords: ultra-processed foods, NOVA, processing, nutrition recommendations

Abstract

Ultra-processed foods (UPFs) are increasingly consumed worldwide and have been linked to several chronic diseases. This paper aims to describe the totality of the available evidence regarding UPFs in relation to health-related outcomes as a basis for setting food-based dietary guidelines for the Nordic Nutrition Recommendations 2023. Systematic literature searches were conducted to identify systematic reviews, meta-analyses, randomized controlled trials (RCTs), and prospective cohort studies examining the association between UPF intake and non-communicable diseases or mortality. A total of 12 systematic reviews (including five meta-analyses) and 44 original research studies (43 prospective cohort studies and one RCT) were included. All original research studies were deemed to be of good methodological quality. The current evidence supports that greater consumption of UPFs is associated with weight gain and increased risk of obesity, cardiovascular disease, type 2 diabetes, and all-cause mortality. The available literature also supports an association between UPFs and hypertension, cancer, and depression; however, the limited number of studies and subjects investigated preclude strong conclusions. Due to the highly diverse nature of UPFs, additional studies are warranted, with special emphasis on disentangling mediating mechanisms, whether nutritional or non-nutrient based. Nevertheless, the available evidence regarding UPFs in relation to weight gain, CVD, type 2 diabetes, and all-cause mortality is considered strong enough to support dietary recommendations to limit their consumption.

Downloads

Download data is not yet available.

References


1.
Monteiro CA, Cannon G, Lawrence M, Costa Louzada ML, Pereira Machado P. Ultra-processed foods, diet quality, and health using the NOVA classification system. 2019. Rome. FAO.


2.
FAO. Food-based dietary guidelines. Available from: https://www.fao.org/nutrition/education/food-dietary-guidelines/en/ [cited 28 August 2022].


3.
Pagliai G, Dinu M, Madarena MP, Bonaccio M, Iacoviello L, Sofi F. Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr 2021; 125(3): 308–18. doi: 10.1017/S0007114520002688


4.
FAO, WHO. Sustainable healthy diets – guiding principles. 2019. Available from: https://www.fao.org/3/ca6640en/ca6640en.pdf [cited 28 August 2022].


5.
Weaver CM, Dwyer J, Fulgoni VL, 3rd, King JC, Leveille GA, MacDonald RS, et al. Processed foods: contributions to nutrition. Am J Clin Nutr 2014; 99(6): 1525–42. doi: 10.3945/ajcn.114.089284


6.
Monteiro CA, Moubarac JC, Cannon G, Ng SW, Popkin B. Ultra-processed products are becoming dominant in the global food system. Obes Rev 2013; 14(Suppl. 2): 21–8. doi: 10.1111/obr.12107


7.
Cutler DM, Glaeser EL, Shapiro JM. Why have Americans become more obese? 2003. NBER Working Paper No 9446. Available from: https://www.nber.org/papers/w9446.pdf [cited 28 August 2022].


8.
Monteiro CA, Moubarac JC, Cannon G, Ng SW, Popkin B. Ultra-processed foods: what they are and how to identify them. Public Health Nutr 2019; 22(5): 936–41. doi: 10.1017/S1368980018003762


9.
Micha R, Shulkin ML, Penalvo JL, Khatibzadeh S, Singh GM, Rao M, et al. Etiologic effects and optimal intakes of foods and nutrients for risk of cardiovascular diseases and diabetes: systematic reviews and meta-analyses from the Nutrition and Chronic Diseases Expert Group (NutriCoDE). PLoS One 2017; 12(4): e0175149. doi: 10.1371/journal.pone.0175149


10.
Martinez Steele E, Baraldi LG, Louzada ML, Moubarac JC, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open 2016; 6(3): e009892. doi: 10.1136/bmjopen-2015-009892


11.
Shekar M, Popkin B. Obesity: health and economic consequences of an impending global challenge. 2020. Available from: https://elibrary.worldbank.org/doi/abs/10.1596/978-1-4648-1491-4 [cited 10 May 2021].


12.
Moubarac JC, Batal M, Louzada ML, Martinez Steele E, Monteiro CA. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 2017; 108: 512–20. doi: 10.1016/j.appet.2016.11.006


13.
Adams J, White M. Characterisation of UK diets according to degree of food processing and associations with socio-demographics and obesity: cross-sectional analysis of UK National Diet and Nutrition Survey (2008–12). Int J Behav Nutr Phys Act 2015; 12: 160. doi: 10.1186/s12966-015-0317-y


14.
Rauber F, da Costa Louzada ML, Steele EM, Millett C, Monteiro CA, Levy RB. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients 2018; 10(5): 587. doi: 10.3390/nu10050587


15.
Louzada M, Ricardo CZ, Steele EM, Levy RB, Cannon G, Monteiro CA. The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil. Public Health Nutr 2018; 21(1): 94–102. doi: 10.1017/S1368980017001434


16.
Machado PP, Steele EM, Levy RB, Sui Z, Rangan A, Woods J, et al. Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: evidence from a nationally representative cross-sectional study. BMJ Open 2019; 9(8): e029544. doi: 10.1136/bmjopen-2019-029544


17.
Machado PP, Steele EM, Louzada M, Levy RB, Rangan A, Woods J, et al. Ultra-processed food consumption drives excessive free sugar intake among all age groups in Australia. Eur J Nutr 2020; 59(6): 2783–92. doi: 10.1007/s00394-019-02125-y


18.
Costa Louzada ML, Martins AP, Canella DS, Baraldi LG, Levy RB, Claro RM, et al. Ultra-processed foods and the nutritional dietary profile in Brazil. Rev Saude Publica 2015; 49: 38. doi: 10.1590/S0034-8910.2015049006132


19.
Martinez Steele E, Popkin BM, Swinburn B, Monteiro CA. The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study. Popul Health Metr 2017; 15(1): 6. doi: 10.1186/s12963-017-0119-3


20.
Monteiro CA, Cannon G, Moubarac JC, Martins AP, Martins CA, Garzillo J, et al. Dietary guidelines to nourish humanity and the planet in the twenty-first century. A blueprint from Brazil. Public Health Nutr 2015; 18(13): 2311–22. doi: 10.1017/S1368980015002165


21.
Israel national dietary guidelines 2020. Available from: https://health.gov.il/PublicationsFiles/dietary%20guidelines%20EN.pdf [cited 2 March 2021].


22.
FAO. Food-based dietary guidelines – Peru. Available from: https://www.fao.org/nutrition/education/food-dietary-guidelines/regions/peru/en/ [cited 24 May 2022].


23.
FAO. Food-based dietary guidelines – Belgium. Available from: https://www.fao.org/nutrition/education/food-dietary-guidelines/regions/countries/belgium/en [cited 24 May 2022].


24.
FAO. Food-based dietary guidelines – Ecuador. Available from: https://www.fao.org/nutrition/education/food-dietary-guidelines/regions/countries/ecuador/en/ [cited 24 May 2022].


25.
FAO. Food-based dietary guidelines – Uruguay. Available from: https://www.fao.org/nutrition/education/food-dietary-guidelines/regions/uruguay/en/ [cited 24 May 2022].


26.
Taillie LS, Busey E, Mediano Stoltze F, Dillman Carpentier FR. Governmental policies to reduce unhealthy food marketing to children. Nutr Rev 2019; 77(11): 787–816. doi: 10.1093/nutrit/nuz021


27.
Astrup A, Monteiro CA. Does the concept of ‘ultra-processed foods’ help inform dietary guidelines, beyond conventional classification systems? NO. Am J Clin Nutr 2022; 116(6): 1482–8. doi: 10.1093/ajcn/nqac123


28.
Gibney MJ, Forde CG, Mullally D, Gibney ER. Ultra-processed foods in human health: a critical appraisal. Am J Clin Nutr 2017; 106(3): 717–24. doi: 10.3945/ajcn.117.160440


29.
Jones JM. Food processing: criteria for dietary guidance and public health? Proc Nutr Soc 2019; 78(1): 4–18. doi: 10.1017/S0029665118002513


30.
Juul F, Simoes BDS, Litvak J, Martinez-Steele E, Deierlein A, Vadiveloo M, et al. Processing level and diet quality of the US grocery cart: is there an association? Public Health Nutr 2019; 22(13): 2357–66. doi: 10.1017/S1368980019001344


31.
Romero Ferreiro C, Lora Pablos D, Gomez de la Camara A. Two dimensions of nutritional value: nutri-score and NOVA. Nutrients 2021; 13(8): 2783. doi: 10.3390/nu13082783


32.
Gupta S, Hawk T, Aggarwal A, Drewnowski A. Characterizing ultra-processed foods by energy density, nutrient density, and cost. Front Nutr 2019; 6: 70. doi: 10.3389/fnut.2019.00070


33.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic nutrition recommendations 2023. 2023. Available from: https://pub.norden.org/nord2023-003/ [cited 28 August 2022].


34.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Hoyer A, et al. The Nordic nutrition recommendations 2022 – principles and methodologies. Food Nutr Res 2020; 64: 4402. doi: 10.29219/fnr.v64.4402


35.
Askari M, Heshmati J, Shahinfar H, Tripathi N, Daneshzad E. Ultra-processed food and the risk of overweight and obesity: a systematic review and meta-analysis of observational studies. Int J Obes (Lond) 2020; 44(10): 2080–91. doi: 10.1038/s41366-020-00650-z


36.
Chen X, Zhang Z, Yang H, Qiu P, Wang H, Wang F, et al. Consumption of ultra-processed foods and health outcomes: a systematic review of epidemiological studies. Nutr J 2020; 19(1): 86. doi: 10.1186/s12937-020-00604-1


37.
Silva Meneguelli T, Viana Hinkelmann J, Hermsdorff HHM, Zulet MA, Martinez JA, Bressan J. Food consumption by degree of processing and cardiometabolic risk: a systematic review. Int J Food Sci Nutr 2020; 71(6): 678–92. doi: 10.1080/09637486.2020.1725961


38.
Santos FSD, Dias MDS, Mintem GC, Oliveira IO, Gigante DP. Food processing and cardiometabolic risk factors: a systematic review. Rev Saude Publica 2020; 54: 70. doi: 10.11606/s1518-8787.2020054001704


39.
Costa CS, Del-Ponte B, Assuncao MCF, Santos IS. Consumption of ultra-processed foods and body fat during childhood and adolescence: a systematic review. Public Health Nutr 2018; 21(1): 148–59. doi: 10.1017/S1368980017001331


40.
Lane MM, Davis JA, Beattie S, Gomez-Donoso C, Loughman A, O’Neil A, et al. Ultraprocessed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies. Obes Rev 2021; 22(3): e13146. doi: 10.1111/obr.13146


41.
Moradi S, Hojjati Kermani MA, Bagheri R, Mohammadi H, Jayedi A, Lane MM, et al. Ultra-processed food consumption and adult diabetes risk: a systematic review and dose-response meta-analysis. Nutrients 2021; 13(12): 4410. doi: 10.3390/nu13124410


42.
Suksatan W, Moradi S, Naeini F, Bagheri R, Mohammadi H, Talebi S, et al. Ultra-processed food consumption and adult mortality risk: a systematic review and dose-response meta-analysis of 207,291 participants. Nutrients 2021; 14(1): 174. doi: 10.3390/nu14010174


43.
Jardim MZ, Costa BVL, Pessoa MC, Duarte CK. Ultra-processed foods increase noncommunicable chronic disease risk. Nutr Res 2021; 95: 19–34. doi: 10.1016/j.nutres.2021.08.006


44.
Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-processed diets cause excess calorie intake and weight gain: an inpatient randomized controlled trial of ad libitum food intake. Cell Metab 2019; 30(1): 226. doi: 10.1016/j.cmet.2019.05.020


45.
Konieczna J, Morey M, Abete I, Bes-Rastrollo M, Ruiz-Canela M, Vioque J, et al. Contribution of ultra-processed foods in visceral fat deposition and other adiposity indicators: prospective analysis nested in the PREDIMED-plus trial. Clin Nutr 2021; 40(6): 4290–300. doi: 10.1016/j.clnu.2021.01.019


46.
Mendonca RD, Pimenta AM, Gea A, de la Fuente-Arrillaga C, Martinez-Gonzalez MA, Lopes AC, et al. Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. Am J Clin Nutr 2016; 104(5): 1433–40. doi: 10.3945/ajcn.116.135004


47.
Beslay M, Srour B, Méjean C, Allès B, Fiolet T, Debras C, et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity: a prospective analysis of the French NutriNet-Santé cohort. PLoS Med 2020; 17(8): e1003256. doi: 10.1371/journal.pmed.1003256


48.
Canhada SL, Luft VC, Giatti L, Duncan BB, Chor D, Fonseca M, et al. Ultra-processed foods, incident overweight and obesity, and longitudinal changes in weight and waist circumference: the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr 2020; 23(6): 1076–86. doi: 10.1017/S1368980019002854


49.
Juul F, Vaidean G, Lin Y, Deierlein AL, Parekh N. Ultra-processed foods and incident cardiovascular disease in the Framingham offspring study. J Am Coll Cardiol 2021; 77(12): 1520–31. doi: 10.1016/j.jacc.2021.01.047


50.
Kim H, Hu EA, Rebholz CM. Ultra-processed food intake and mortality in the USA: results from the Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994). Public Health Nutr 2019; 22(10): 1777–85. doi: 10.1017/S1368980018003890


51.
Srour B, Fezeu LK, Kesse-Guyot E, Alles B, Mejean C, Andrianasolo RM, et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Sante). BMJ 2019; 365: l1451. doi: 10.1136/bmj.l1451


52.
Bonaccio M, Di Castelnuovo A, Costanzo S, De Curtis A, Persichillo M, Sofi F, et al. Ultra-processed food consumption is associated with increased risk of all-cause and cardiovascular mortality in the Moli-sani Study. Am J Clin Nutr 2021; 113(2): 446–55. doi: 10.1093/ajcn/nqaa299


53.
Srour B, Fezeu LK, Kesse-Guyot E, Alles B, Debras C, Druesne-Pecollo N, et al. Ultraprocessed food consumption and risk of type 2 diabetes among participants of the NutriNet-Sante prospective cohort. JAMA Intern Med 2020; 180(2): 283–91. doi: 10.1001/jamainternmed.2019.5942


54.
Scaranni P, Cardoso LO, Chor D, Melo ECP, Matos SMA, Giatti L, et al. Ultra-processed foods, changes in blood pressure and incidence of hypertension: the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr 2021; 24(11): 3352–60. doi: 10.1017/S136898002100094X


55.
Fiolet T, Srour B, Sellem L, Kesse-Guyot E, Alles B, Mejean C, et al. Consumption of ultra-processed foods and cancer risk: results from NutriNet-Sante prospective cohort. BMJ 2018; 360: k322. doi: 10.1136/bmj.k322


56.
Gómez-Donoso C, Sánchez-Villegas A, Martínez-González MA, Gea A, Mendonça RD, Lahortiga-Ramos F, et al. Ultra-processed food consumption and the incidence of depression in a Mediterranean cohort: the SUN Project. Eur J Nutr 2020; 59(3): 1093–103. doi: 10.1007/s00394-019-01970-1


57.
Adjibade M, Julia C, Alles B, Touvier M, Lemogne C, Srour B, et al. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Sante cohort. BMC Med 2019; 17(1): 78. doi: 10.1186/s12916-019-1312-y


58.
Rico-Campa A, Martinez-Gonzalez MA, Alvarez-Alvarez I, Mendonca RD, de la Fuente-Arrillaga C, Gomez-Donoso C, et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 2019; 365: l1949. doi: 10.1136/bmj.l1949


59.
Blanco-Rojo R, Sandoval-Insausti H, Lopez-Garcia E, Graciani A, Ordovas JM, Banegas JR, et al. Consumption of ultra-processed foods and mortality: a national prospective cohort in Spain. Mayo Clin Proc 2019; 94(11): 2178–88. doi: 10.1016/j.mayocp.2019.03.035


60.
Schnabel L, Kesse-Guyot E, Alles B, Touvier M, Srour B, Hercberg S, et al. Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA Intern Med 2019; 179(4): 490–8. doi: 10.1001/jamainternmed.2018.7289


61.
Sandoval-Insausti H, Blanco-Rojo R, Graciani A, López-García E, Moreno-Franco B, Laclaustra M, et al. Ultra-processed food consumption and incident frailty: a prospective cohort study of older adults. J Gerontol A Biol Sci Med Sci 2020; 75(6): 1126–33. doi: 10.1093/gerona/glz140


62.
Vasseur P, Dugelay E, Benamouzig R, Savoye G, Lan A, Srour B, et al. Dietary patterns, ultra-processed food, and the risk of inflammatory bowel diseases in the NutriNet-Sante cohort. Inflamm Bowel Dis 2021; 27(1): 65–73. doi: 10.1093/ibd/izaa018


63.
Rohatgi KW, Tinius RA, Cade WT, Steele EM, Cahill AG, Parra DC. Relationships between consumption of ultra-processed foods, gestational weight gain and neonatal outcomes in a sample of US pregnant women. PeerJ 2017; 5: e4091. doi: 10.7717/peerj.4091


64.
Borge TC, Biele G, Papadopoulou E, Andersen LF, Jacka F, Eggesbo M, et al. The associations between maternal and child diet quality and child ADHD – findings from a large Norwegian pregnancy cohort study. BMC Psychiatry 2021; 21(1): 139. doi: 10.1186/s12888-021-03130-4


65.
Machado Azeredo C, Cortese M, Costa CDS, Bjornevik K, Barros AJD, Barros FC, et al. Ultra-processed food consumption during childhood and asthma in adolescence: data from the 2004 Pelotas birth cohort study. Pediatr Allergy Immunol 2020; 31(1): 27–37. doi: 10.1111/pai.13126


66.
Li M, Shi Z. Ultra-processed food consumption associated with overweight/obesity among Chinese adults-results from China health and nutrition survey 1997–2011. Nutrients 2021; 13(8): 2796. doi: 10.3390/nu13082796


67.
Rauber F, Chang K, Vamos EP, da Costa Louzada ML, Monteiro CA, Millett C, et al. Ultra-processed food consumption and risk of obesity: a prospective cohort study of UK Biobank. Eur J Nutr 2021; 60(4): 2169–80. doi: 10.1007/s00394-020-02367-1


68.
Du S, Kim H, Rebholz CM. Higher ultra-processed food consumption is associated with increased risk of incident coronary artery disease in the atherosclerosis risk in communities study. J Nutr 2021; 151(12): 3746–54. doi: 10.1093/jn/nxab285


69.
Zhong GC, Gu HT, Peng Y, Wang K, Wu YQ, Hu TY, et al. Association of ultra-processed food consumption with cardiovascular mortality in the US population: long-term results from a large prospective multicenter study. Int J Behav Nutr Phys Act 2021; 18(1): 21. doi: 10.1186/s12966-021-01081-3


70.
Mendonca RD, Lopes AC, Pimenta AM, Gea A, Martinez-Gonzalez MA, Bes-Rastrollo M. Ultra-processed food consumption and the incidence of hypertension in a Mediterranean cohort: the Seguimiento Universidad de Navarra project. Am J Hypertens 2017; 30(4): 358–66. doi: 10.1093/ajh/hpw137


71.
Monge A, Silva Canella D, Lopez-Olmedo N, Lajous M, Cortes-Valencia A, Stern D. Ultraprocessed beverages and processed meats increase the incidence of hypertension in Mexican women. Br J Nutr 2021; 126(4): 600–11. doi: 10.1017/S0007114520004432


72.
Duan MJ, Vinke PC, Navis G, Corpeleijn E, Dekker LH. Ultra-processed food and incident type 2 diabetes: studying the underlying consumption patterns to unravel the health effects of this heterogeneous food category in the prospective Lifelines cohort. BMC Med 2022; 20(1): 7. doi: 10.1186/s12916-021-02200-4


73.
Levy RB, Rauber F, Chang K, Louzada M, Monteiro CA, Millett C, et al. Ultra-processed food consumption and type 2 diabetes incidence: a prospective cohort study. Clin Nutr 2021; 40(5): 3608–14. doi: 10.1016/j.clnu.2020.12.018


74.
Llavero-Valero M, Escalada-San Martin J, Martinez-Gonzalez MA, Basterra-Gortari FJ, de la Fuente-Arrillaga C, Bes-Rastrollo M. Ultra-processed foods and type-2 diabetes risk in the SUN project: a prospective cohort study. Clin Nutr 2021; 40(5): 2817–24. doi: 10.1016/j.clnu.2021.03.039


75.
Donat-Vargas C, Sandoval-Insausti H, Rey-Garcia J, Moreno-Franco B, Akesson A, Banegas JR, et al. High consumption of ultra-processed food is associated with incident dyslipidemia: a prospective dtudy of older adults. J Nutr 2021; 151(8): 2390–8. doi: 10.1093/jn/nxab118


76.
Narula N, Wong ECL, Dehghan M, Mente A, Rangarajan S, Lanas F, et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: prospective cohort study. BMJ 2021; 374: n1554. doi: 10.1136/bmj.n1554


77.
Zhang T, Gan S, Ye M, Meng G, Zhang Q, Liu L, et al. Association between consumption of ultra-processed foods and hyperuricemia: TCLSIH prospective cohort study. Nutr Metab Cardiovasc Dis 2021; 31(7): 1993–2003. doi: 10.1016/j.numecd.2021.04.001


78.
Rey-Garcia J, Donat-Vargas C, Sandoval-Insausti H, Bayan-Bravo A, Moreno-Franco B, Banegas JR, et al. Ultra-processed food consumption is associated with renal function decline in older adults: a prospective cohort study. Nutrients 2021; 13(2): 428. doi: 10.3390/nu13020428


79.
Gomes CB, Malta MB, Benicio MHD, Carvalhaes M. Consumption of ultra-processed foods in the third gestational trimester and increased weight gain: a Brazilian cohort study. Public Health Nutr 2021; 24(11): 3304–12. doi: 10.1017/S1368980020001883


80.
Leone A, Martinez-Gonzalez MA, Craig W, Fresan U, Gomez-Donoso C, Bes-Rastrollo M. Pre-gestational consumption of ultra-processed foods and risk of gestational diabetes in a Mediterranean cohort. The SUN project. Nutrients 2021; 13(7): 2202. doi: 10.3390/nu13072202


81.
Chang K, Khandpur N, Neri D, Touvier M, Huybrechts I, Millett C, et al. Association between childhood consumption of ultraprocessed food and adiposity trajectories in the avon longitudinal study of parents and children birth cohort. JAMA Pediatr 2021; 175(9): e211573. doi: 10.1001/jamapediatrics.2021.1573


82.
Costa CDS, Assuncao MCF, Loret de Mola C, Cardoso JS, Matijasevich A, Barros AJD, et al. Role of ultra-processed food in fat mass index between 6 and 11 years of age: a cohort study. Int J Epidemiol 2021; 50(1): 256–65. doi: 10.1093/ije/dyaa141


83.
Costa CS, Rauber F, Leffa PS, Sangalli CN, Campagnolo PDB, Vitolo MR. Ultra-processed food consumption and its effects on anthropometric and glucose profile: a longitudinal study during childhood. Nutr Metab Cardiovasc Dis 2019; 29(2): 177–84. doi: 10.1016/j.numecd.2018.11.003


84.
Leffa PS, Hoffman DJ, Rauber F, Sangalli CN, Valmórbida JL, Vitolo MR. Longitudinal associations between ultra-processed foods and blood lipids in childhood. Br J Nutr 2020; 124(3): 341–8. doi: 10.1017/s0007114520001233


85.
Vedovato GM, Vilela S, Severo M, Rodrigues S, Lopes C, Oliveira A. Ultra-processed food consumption, appetitive traits and BMI in children: a prospective study. Br J Nutr 2021; 125(12): 1427–36. doi: 10.1017/S0007114520003712


86.
Rauber F, Campagnolo PD, Hoffman DJ, Vitolo MR. Consumption of ultra-processed food products and its effects on children’s lipid profiles: a longitudinal study. Nutr Metab Cardiovasc Dis 2015; 25(1): 116–22. doi: 10.1016/j.numecd.2014.08.001


87.
Cochrane. Risk of bias 2 (RoB 2) tool. Cochrane methods. Available from: https://methods.cochrane.org/risk-bias-2 [cited 10 April 2022].


88.
USDA. Risk of bias for nutrition observational studies (RoB-NObs) tool. USDA Nutrition Evidence Systematic Review. Available from: https://nesr.usda.gov/sites/default/files/2019-07/RiskOfBiasForNutritionObservationalStudies-RoB-NObs.pdf [cited 10 April 2022].


89.
Mertens E, Colizzi C, Penalvo JL. Ultra-processed food consumption in adults across Europe. Eur J Nutr 2022; 61(3): 1521–39. doi: 10.1007/s00394-021-02733-7


90.
Monteiro CA, Moubarac JC, Levy RB, Canella DS, Louzada M, Cannon G. Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr 2018; 21(1): 18–26. doi: 10.1017/S1368980017001379


91.
Solberg SL, Terragni L, Granheim SI. Ultra-processed food purchases in Norway: a quantitative study on a representative sample of food retailers. Public Health Nutr 2016; 19(11): 1990–2001. doi: 10.1017/s1368980015003523


92.
Juul F, Hemmingsson E. Trends in consumption of ultra-processed foods and obesity in Sweden between 1960 and 2010. Public Health Nutr 2015; 18(17): 3096–107. doi: 10.1017/S1368980015000506


93.
Cordova R, Kliemann N, Huybrechts I, Rauber F, Vamos EP, Levy RB, et al. Consumption of ultra-processed foods associated with weight gain and obesity in adults: a multi-national cohort study. Clin Nutr 2021; 40(9): 5079–88. doi: 10.1016/j.clnu.2021.08.009


94.
Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 2016; 133(2): 187–225. doi: 10.1161/CIRCULATIONAHA.115.018585


95.
Fardet A, Rock E, Bassama J, Bohuon P, Prabhasankar P, Monteiro C, et al. Current food classifications in epidemiological studies do not enable solid nutritional recommendations for preventing diet-related chronic diseases: the impact of food processing. Adv Nutr 2015; 6(6): 629–38. doi: 10.3945/an.115.008789


96.
Juul F, Vaidean G, Parekh N. Ultra-processed foods and cardiovascular diseases: potential mechanisms of action. Adv Nutr 2021; 12(5): 1673–80. doi: 10.1093/advances/nmab049


97.
Dicken SJ, Batterham RL. The role of diet quality in mediating the association between ultra-processed food intake, obesity and health-related outcomes: a review of prospective cohort studies. Nutrients 2021; 14(1): 23. doi: 10.3390/nu14010023


98.
Fardet A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: a preliminary study with 98 ready-to-eat foods. Food Funct 2016; 7(5): 2338–46. doi: 10.1039/c6fo00107f


99.
Teo PS, Lim AJ, Goh AT, R J, Choy JYM, McCrickerd K, et al. Texture-based differences in eating rate influence energy intake for minimally processed and ultra-processed meals. Am J Clin Nutr 2022; 116(1): 244–54. doi: 10.1093/ajcn/nqac068


100.
Spreadbury I. Comparison with ancestral diets suggests dense acellular carbohydrates promote an inflammatory microbiota, and may be the primary dietary cause of leptin resistance and obesity. Diabetes Metab Syndr Obes 2012; 5: 175–89. doi: 10.2147/DMSO.S33473


101.
Zinocker MK, Lindseth IA. The western diet-microbiome-host interaction and its role in metabolic disease. Nutrients 2018; 10(3): 365. doi: 10.3390/nu10030365


102.
Makki K, Deehan EC, Walter J, Backhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 2018; 23(6): 705–15. doi: 10.1016/j.chom.2018.05.012


103.
Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 2014; 20(5): 779–86. doi: 10.1016/j.cmet.2014.07.003


104.
Fu L, Zhang G, Qian S, Zhang Q, Tan M. Associations between dietary fiber intake and cardiovascular risk factors: an umbrella review of meta-analyses of randomized controlled trials. Front Nutr 2022; 9: 972399. doi: 10.3389/fnut.2022.972399


105.
McRae MP. Dietary fiber intake and type 2 diabetes mellitus: an umbrella review of meta-analyses. J Chiropr Med 2018; 17(1): 44–53. doi: 10.1016/j.jcm.2017.11.002


106.
Nettleton JE, Reimer RA, Shearer J. Reshaping the gut microbiota: impact of low calorie sweeteners and the link to insulin resistance? Physiol Behav 2016; 164(Pt B): 488–93. doi: 10.1016/j.physbeh.2016.04.029


107.
Dalenberg JR, Patel BP, Denis R, Veldhuizen MG, Nakamura Y, Vinke PC, et al. Short-term consumption of sucralose with, but not without, carbohydrate impairs neural and metabolic sensitivity to sugar in humans. Cell Metab 2020; 31(3): 493–502.e7. doi: 10.1016/j.cmet.2020.01.014


108.
Suez J, Cohen Y, Valdes-Mas R, Mor U, Dori-Bachash M, Federici S, et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022; 185(18): 3307–28.e19. doi: 10.1016/j.cell.2022.07.016


109.
Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 2017; 66(8): 1414–27. doi: 10.1136/gutjnl-2016-313099


110.
Chassaing B, Compher C, Bonhomme B, Liu Q, Tian Y, Walters W, et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome. Gastroenterology 2022; 162(3): 743–56. doi: 10.1053/j.gastro.2021.11.006


111.
Bueno-Hernandez N, Esquivel-Velazquez M, Alcantara-Suarez R, Gomez-Arauz AY, Espinosa-Flores AJ, de Leon-Barrera KL, et al. Chronic sucralose consumption induces elevation of serum insulin in young healthy adults: a randomized, double blind, controlled trial. Nutr J 2020; 19(1): 32. doi: 10.1186/s12937-020-00549-5


112.
Calvo MS, Uribarri J. Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population. Am J Clin Nutr 2013; 98(1): 6–15. doi: 10.3945/ajcn.112.053934


113.
WHO. Food additives. World Health Organization. Available from: https://www.who.int/en/news-room/fact-sheets/detail/food-additives [cited 7 April 2020].


114.
Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bugel S, Nielsen J, et al. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 2013; 60: 10–37. doi: 10.1016/j.fct.2013.06.052


115.
Feroe AG, Attanasio R, Scinicariello F. Acrolein metabolites, diabetes and insulin resistance. Environ Res 2016; 148: 1–6. doi: 10.1016/j.envres.2016.03.015


116.
Lin CY, Lin YC, Kuo HK, Hwang JJ, Lin JL, Chen PC, et al. Association among acrylamide, blood insulin, and insulin resistance in adults. Diabetes Care 2009; 32(12): 2206–11. doi: 10.2337/dc09-0309


117.
Stallings-Smith S, Mease A, Johnson TM, Arikawa AY. Exploring the association between polycyclic aromatic hydrocarbons and diabetes among adults in the United States. Environ Res 2018; 166: 588–94. doi: 10.1016/j.envres.2018.06.041


118.
Sacks FM, Lichtenstein AH, Wu JHY, Appel LJ, Creager MA, Kris-Etherton PM, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation 2017; 136(3): e1–23. doi: 10.1161/CIR.0000000000000510


119.
Buckley JP, Kim H, Wong E, Rebholz CM. Ultra-processed food consumption and exposure to phthalates and bisphenols in the US National Health and Nutrition Examination Survey, 2013–2014. Environ Int 2019; 131: 105057. doi: 10.1016/j.envint.2019.105057


120.
Ranciere F, Lyons JG, Loh VH, Botton J, Galloway T, Wang T, et al. Bisphenol A and the risk of cardiometabolic disorders: a systematic review with meta-analysis of the epidemiological evidence. Environ Health 2015; 14: 46. doi: 10.1186/s12940-015-0036-5
Published
2024-04-24
How to Cite
Juul F., & Bere E. (2024). Ultra-processed foods – a scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10616
Section
Nordic Nutrition Recommendations