Suppressive effect of glycyrrhizic acid against lipopolysaccharideinduced neuroinflammation and cognitive impairment in C57 mice via toll-like receptor 4 signaling pathway

  • Wenfeng Liu
  • Shun Huang
  • Yonglian Li
  • Kun Zhang
  • Xi Zheng
Keywords: glycyrrhizinic acid; LPS; neuroinflammation; memory impairments; Toll-like receptor (TLR4)


Background: Glycyrrhizinic acid (GA), a major active ingredient enriched in the roots of licorice, possesses well-confirmed anti-inflammatory effects.

Objective: To evaluate the underlying mechanisms of GA against lipopolysaccharide (LPS)-induced chronic neuroinflammation and memory impairment.

Design: We explored to investigate the effects of GA on neuroinflammation and memory impairment in an LPS-induced Alzheimer’s mouse model.

Results: Data of micro-PET/CT imaging and morris water maze test suggested that GA, when administrated orally, could reverse LPS-induced abnormalized glucose intake and metabolism in the brain and alleviate LPS-induced memory loss and cognitive defects in mice. Histological and immunohistochemical staining results revealed that GA treatment suppressed overexpressions of pro-inflammatory cytokines of IL-1 β and TNF-α in the brain of C57 mice by inhibiting toll-like receptor 4 (TLR4) signaling pathway activation.

Conclusion: Our findings suggest that GA may be a therapeutic agent for the treatment of neuroinflammation and cognitive impairment.


Download data is not yet available.


  1. Alzheimer A. Über eigenartige krankheitsfälle des späteren alters. Z Gesamte Neurol Psychiatr 1911; 4(1): 356. doi: 10.1007/BF02866241.

  2. Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 2015; 4(1): 19. doi: 10.1186/s40035-015-0042-0.

  3. Liu B, Hong JS. Role of microglia in inflammation-mediated Neurodegenerative disorder: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 2003; 304(1): 1–7. doi: 10.1124/jpet.102.035048.

  4. Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, et al. Glialneuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 1998; 8(1): 65–72. doi: 10.1111/j.1750-3639.1998.tb00136.x.

  5. Ranaivo HR, Craft JM, Hu WH, Guo LL, Wing K, Van Eldik LJ, et al. Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci 2006; 26(2): 662–70. doi: 10.1523/JNEUROSCI.4652-05.2006.

  6. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21(3): 383–421. doi: 10.1016/S0197-4580(00)00124-X.

  7. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006; 12(9): 1005. doi: 10.1038/nm1484.

  8. Morales I, Guzman-Martinez L, Cerda-Troncoso C, Farias GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer’s disease: a rational framework for the search of novel therapeutic approaches. Front Cell Neurosci 2014; 8: 112. doi: 10.3389/fncel.2014.00112.

  9. Fiore C, Eisenhut M, Ragazzi E, Zanchin G, Armanini D. A history of the therapeutic use of liquorice in Europe. J Ethnopharmacol 2005; 99(3): 317–24. doi: 10.1016/j.jep.2005.04.015.

  10. Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmaco 2006; 46(3): 167–92. doi: 10.1016/j.yrtph.2006.06.002.

  11. Wang W, Hu X, Zhao Z, Liu P, Hu Y, Zhou J. Antidepressant-like effects of liquiritin and isoliquiritin from Glycyrrhiza uralensis in the forced swimming test and tail suspension test in mice. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(5): 1179–84. doi: 10.1016/j.pnpbp.2007.12.021.

  12. Ahn J, Um M, Choi W, Kim S, Ha T. Protective effects of Glycyrrhiza uralensis Fisch on the cognitive deficits caused by β-amyloid peptide 25–35 in young mice. Biogerontology 2006; 7(4): 239–47. doi: 10.1007/s10522-006-9023-0.

  13. Andrikopoulos NK, Kaliora AC, Assimopoulou NA, Papapeorgiou VP. Biological activity of some naturally occurring resins, gums and pigments against in vitro LDL oxidation. Phytother Res 2003; 17(5): 501–7. doi: 10.1002/ptr.1185.

  14. Kim KJ, Choi JS, Kim KW, Jeong JW. The anti-angiogenic activities of glycyrrhizic acid in tumor progression. Phytother Res 2013; 27(6): 841–46. doi: 10.1002/ptr.4800.

  15. Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm Biol 2017; 55(1): 5–18. doi: 10.1080/13880209.2016.1225775.

  16. Gong G, Yuan LB, Hu L, Wu W, Yin L, Hou JL, et al. Glycyrrhizin attenuates rat ischemic spinal cord injury by suppressing inflammatory cytokines and HMGB1. Acta Pharmacol Sin 2012; 33(1): 11. doi: 10.1038/aps.2011.151.

  17. Cherng JM, Lin HJ, Hung MS, Lin YR, Chan MH, Lin JC. Inhibition of nuclear factor κB is associated with neuroprotective effects of glycyrrhizic acid on glutamate-induced excitotoxicity in primary neurons. Eur J Pharmacol 2006; 547(1–3): 10–21. doi: 10.1016/j.ejphar.2006.06.080.

  18. Luo L, Jin Y, Kim ID, Lee JK. Glycyrrhizin attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. Exp Neurobiol 2013; 22(2): 107–15. doi: 10.5607/en.2013.22.2.107.

  19. Kao TC, Shyu MH, Yen GC. Glycyrrhizic acid and 18β-glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3β signaling and glucocorticoid receptor activation. J Agric Food Chem 2010; 58(15): 8623–9. doi: 10.1021/jf101841r.

  20. Wang CY, Kao TC, Lo WH, Yen GC. Glycyrrhizic acid and 18β-glycyrrhetinic acid modulate lipopolysaccharide-induced inflammatory response by suppression of NF-κB through PI3K p110δ and p110γ inhibitions. J Agric Food Chem 2011; 59(14): 7726–33. doi: 10.1021/jf2013265.

  21. Chen M, Chang YY, Huang S, Xiao LH, Zhou W, Zhang LY, et al. Aromatic-turmerone attenuates LPS-induced neuroinflammation and consequent memory impairment by targeting TLR4-dependent signaling pathway. Mol Nutr Food Res 2018; 62(2): 1700281. doi: 10.1002/mnfr.201700281.

  22. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11(1): 47–60. doi: 10.1016/0165-0270(84)90007-4.

  23. Sparkman NL, Martin LA, Calvert WS, Boehm GW. Effects of intraperitoneal lipopolysaccharide on Morris maze performance in year-old and 2-month-old female C57BL/6J mice. Behav Brain Res 2005; 159(1): 145–51. doi: 10.1016/j.bbr.2004.10.011.

  24. Kapogiannis D, Mattson MP. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 2011; 10(2): 187–98. doi: 10.1016/S1474-4422(10)70277-5.

  25. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8(1): 57. doi: 10.1038/nrn2038.

  26. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 2008; 42(2): 145–51. doi: 10.1016/j.cyto.2008.01.006.

  27. Raz N, Ghisletta P, Rodrigue KM, Kennedy KM, Lindenberger U. Trajectories of brain aging in middle-aged and older adults: regional and individual differences. Neuroimage 2010; 51(2): 501–11. doi: 10.1016/j.neuroimage.2010.03.020.

  28. Semmler A, Hermann S, Mormann F, Weberpals M, Paxian SA, Okulla T, et al. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation 2008; 5(1): 38. doi: 10.1186/1742-2094-5-38.

  29. Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 2008; 5(1): 37. doi: 10.1186/1742-2094-5-37.

  30. Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 2011; 7(3): 137. doi: 10.1038/nrneurol.2011.2.

  31. Eichenbaum H. A cortical-hippocampal system for declarative memory. Nat Rev Neurosci 2000; 1(1): 41. doi: 10.1038/35036213.

  32. Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 2004; 44(1): 109–20. doi: 10.1016/j.neuron.2004.08.028.

  33. Palop JJ, Mucke L. Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 2010; 13(7): 812. doi: 10.1038/nn.2583.

  34. Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015; 3(10): 136. doi: 10.3978/j.issn.2305-5839.2015.03.49.

  35. Francois A, Terro F, Quellard N, Fernandez B, Chassaing D, Janet T, et al. Impairment of autophagy in the central nervous system during lipopolysaccharide-induced inflammatory stress in mice. Mol Brain 2014; 7(1): 56. doi: 10.1186/s13041-014-0056-z.

  36. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007; 55(5): 453–62. doi: 10.1002/glia.20467.

  37. Jeong YH, Park JS, Kim DH, Kang JL, Kim HS. Anti-inflammatory mechanism of lonchocarpine in LPS- or poly(I:C)-induced neuroinflammation. Pharmacol Res 2017; 119: 431–42. doi: 10.1016/j.phrs.2017.02.027.

  38. Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 2004; 1(1): 14. doi: 10.1186/1742-2094-1-14.

  39. Aravalli RN, Peterson PK, Lokensgard JR. Toll-like receptors in defense and damage of the central nervous system. J Neuroimmune Pharmacol 2007; 2(4): 297–312. doi: 10.1007/s11481-007-9071-5.

  40. Sara FL, Pascual M, Guerri C. Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 2009; 183(7): 4733–44. doi: 10.4049/jimmunol.0803590.

  41. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, et al. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol 2007; 20(6): 947–56. doi: 10.1159/000110455.

How to Cite
Liu W., Huang S., Li Y., Zhang K., & Zheng X. (2019). Suppressive effect of glycyrrhizic acid against lipopolysaccharideinduced neuroinflammation and cognitive impairment in C57 mice via toll-like receptor 4 signaling pathway. Food & Nutrition Research, 63.
Original Articles