Blood biomarkers of various dietary patterns correlated with metabolic indicators in Taiwanese type 2 diabetes
Abstract
Background: Metabolic alterations correlate with adverse outcomes in type 2 diabetes. Dietary modification serves as an integral part in its treatment.
Objective: We examined the relationships among dietary patterns, dietary biomarkers, and metabolic indicators in type 2 diabetes (n = 871).
Design: Diabetic patients (n = 871) who provided complete clinical and dietary data in both 2008 and 2009 were selected from a cohort participating in a diabetic control study in Taiwan. Dietary data were obtained using a short, semiquantitative food frequency questionnaires, and dietary pattern identified by factor analysis. Multiple linear regressions were used to analyze the association between dietary biomarkers (ferritin, folate, and erythrocyte n-3 polyunsaturated fatty acids [n-3 PUFAs]) and metabolic control upon adjusting for confounders.
Results: Three dietary patterns (high-fat meat, traditional Chinese food–snack, and fish–vegetable) were identified. Ferritin correlated positively with high-fat meat factor scores (P for trend <0.001). Erythrocyte n-3 PUFAs (eicosapentaenoic acid [EPA] + docosahexaenoic acid [DHA], n-3/n-6 PUFA ratio) correlated positively with fish–vegetable factor scores (all P for trends <0.001). Multiple linear regressions revealed a positive relationship between ferritin concentrations and fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), and triglycerides, but a negative relationship with high-density lipoprotein cholesterol (HDL-C). Erythrocyte n-3 PUFA, EPA+DHA, and n-3/n-6 PUFA ratio were negatively linked to FPG, HbA1c, and triglycerides (all P < 0.05) and positively with HDL-C (though n-3/n-6 ratio marginally correlated).
Conclusions: Ferritin and n-3 PUFA can serve as valid biomarkers for high-fat meat and fish–vegetable dietary patterns. Unlike ferritin, erythrocyte n-3 PUFA status was related to better glycemic and blood lipid profiles. Our results suggest that habitual consumption of diet pattern rich in fish and vegetables may contribute in part to a healthier metabolic profile in type 2 diabetes.
Downloads
References
- Yang G, Kong L, Zhao W, Wan X, Zhai Y, Chen LC, et al. Emergence of chronic non-communicable diseases in China. Lancet 2008; 372(9650): 1697–705. doi: 10.1016/S0140-6736(08)61366-5.
- Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011; 94(3): 311–21. doi: 10.1016/j.diabres.2011.10.029.
- Jiang YD, Chang CH, Tai TY, Chen JF, Chuang LM. Incidence and prevalence rates of DM in Taiwan: analysis of the 2000–2009 Nationwide Health Insurance database. J Formos Med Assoc 2012; 111(11): 599–604. doi: 10.1016/j.jfma.2012.09.014.
- Quispe R, Martin SS, Jones SR. Triglycerides to high-density lipoprotein- cholesterol ratio, glycemic control and cardiovascular risk in obese patients with type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 2016; 23(2): 150–6. doi: 10.1097/MED.0000000000000241.
- Erber E, Hopping BN, Grandinetti A, Park SY, Kolonel LN, Maskarinec G. Dietary patterns and risk for diabetes: the multiethnic cohort. Diabetes Care 2010; 33(3): 532–8. doi: 10.2337/dc09-1621.
- Malik VS, Fung TT, van Dam RM, Rimm EB, Rosner B, Hu FB. Dietary patterns during adolescence and risk of type 2 diabetes in middle-aged women. Diabetes Care 2012; 35(1): 12–18. doi: 10.2337/dc11-0386.
- Nettleton JA, Steffen LM, Ni H, Liu K, Jacobs DR Jr. Dietary patterns and risk of incident type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2008; 31(9): 1777–82. doi: 10.2337/dc08-0760.
- Reeds J, Mansuri S, Mamakeesick M, Harris SB, Zinman B, Gittelsohn J, et al. Dietary Patterns and Type 2 Diabetes Mellitus in a First Nations Community. Can J Diabetes 2016; 40(4): 304–10. doi: 10.1016/j.jcjd.2016.05.001.
- Newby PK, Tucker KL. Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev 2004; 62(5): 177–203. doi: 10.1301/nr.2004.may.177-203.
- Odegaard AO, Koh WP, Butler LM, Duval S, Gross MD, Yu MC, et al. Dietary patternsand incident type 2 diabetes in chinese men and women: the Singapore Chinese health study. Diabetes Care 2011; 34(4): 880–5. doi: 10.2337/dc10-2350.
- Chung HF, Hsu CC, Mamun AA, Long KZ, Huang YF, Shin SJ, et al. Dietary patterns, dietary biomarkers, and kidney disease in patients with type 2 diabetes: a repeated-measure study in Taiwan. Asia Pac J Clin Nutr. 2018; 27(2): 366–74. doi: 10.6133/apjcn.042017.15.
- Hsu CC, Jhang HR, Chang WT, Lin CH, Shin SJ, Hwang SJ, et al. Associations between dietary patterns and kidney function indicators in type 2 diabetes. Clin Nutr 2014; 33(1): 98–105. doi: 10.1016/j.clnu.2013.04.010.
- Fung TT, Rimm EB, Spiegelman D, Rifai N, Tofler GH, Willett WC, et al. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr 2001; 73(1): 61–7. doi: 10.1093/ajcn/73.1.61.
- Couillard C, Lemieux S, Vohl MC, Couture P, Lamarche B. Carotenoids as biomarkers of fruit and vegetable intake in men and women. Br J Nutr 2016; 116(7): 1206–15. doi: 10.1017/S0007114516003056.
- Lee JE, Chan AT. Fruit, vegetables, and folate: cultivating the evidence for cancer prevention. Gastroenterology 2011; 141(1): 16–20. doi: 10.1053/j.gastro.2011.05.020.
- Kondo K, Morino K, Nishio Y, Kondo M, Nakao K, Nakagawa F, et al. A fish- based diet intervention improves endothelial function in postmenopausal women with type 2 diabetes mellitus: a randomized crossover trial. Metabolism 2014; 63(7): 930–40. doi: 10.1016/j.metabol.2014.04.005.
- Chung HF, Long KZ, Hsu CC, Al Mamun A, Jhang HR, Shin SJ, et al. Association of n-3 polyunsaturated fatty acids and inflammatory indicators with renal function decline in type 2 diabetes. Clin Nutr 2015; 34(2): 229–34. doi: 10.1016/j.clnu.2014.02.009
- Huang MC, Lin KD, Chen HJ, Wu YJ, Chang CI, Shin SJ, et al. Validity of a short food frequency questionnaire assessing macronutrient and fiber intakes in patients of Han Chinese descent with type 2 diabetes. Int J Environ Res Public Health 2018; 15(6): 1142–55. doi: 10.3390/ijerph15061142.
- Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37(8): 911–17. doi: 10.1139/o59-099.
- Abril-Ulloa V, Flores-Mateo G, Sola-Alberich R, Manuel-y-Keenoy B, Arija V. Ferritin levels and risk of metabolic syndrome: meta-analysis of observational studies. BMC Public Health 2014; 14: 483. doi: 10.1186/1471-2458-14-483.
- Orban E, Schwab S, Thorand B, Huth C. Association of iron indices and type 2 diabetes: a meta-analysis of observational studies. Diabetes Metab Res Rev 2014; 30(5): 372–94. doi: 10.1002/dmrr.2506.
- Ren Y, Tian H, Li X, Liang J, Zhao G. Elevated serum ferritin concentrations in a glucose-impaired population and in normal glucose tolerant first-degree relatives in familial type 2 diabetic pedigrees. Diabetes Care 2004; 27(2): 622–3. doi: 10.2337/diacare.27.2.622.
- Jehn M, Clark JM, Guallar E. Serum ferritin and risk of the metabolic syndrome in U.S. adults. Diabetes Care 2004; 27(10): 2422–8. doi: 10.2337/diacare.27.10.2422.
- Jiang L, Wang A, Molyneaux LM, Constantino MI, Yue DK. The long-term impact of ferritin level on treatment and complications of type 2 diabetes. Diabetes Obes Metab 2008; 10(6): 519–22. doi: 10.1111/j.1463-1326.2008.00855.x.
- Fernandez-Real JM, Penarroja G, Castro A, Garcia-Bragado F, Hernandez-Aguado I, Ricart W. Blood letting in high-ferritin type 2 diabetes: effects on insulin sensitivity and beta-cell function. Diabetes 2002; 51(4): 1000–4. doi: 10.2337/diabetes.51.4.1000.
- Qian M, Liu M, Eaton JW. Transition metals bind to glycated proteins forming redox active “glycochelates”: implications for the pathogenesis of certain diabetic complications. Biochem Biophys Res Commun 1998; 250(2): 385–9. doi: 10.1006/bbrc.1998.9326.
- Wirfalt E, Hedblad B, Gullberg B, Mattisson I, Andren C, Rosander U, et al. Food patterns and components of the metabolic syndrome in men and women: a cross-sectional study within theMalmö Diet and Cancer cohort. Am J Epidemiol 2001; 154(12): 1150–9. doi: 10.1093/aje/154.12.1150.
- Wittenbecher C, Muhlenbruch K, Kroger J, Jacobs S, Kuxhaus O, Floegel A, et al. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am J Clin Nutr 2015; 101(6): 1241–50. doi: 10.3945/ajcn.114.099150.
- Cooksey RC, Jouihan HA, Ajioka RS, Hazel MW, Jones DL, Kushner JP, et al. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 2004; 145(11): 5305–12. doi: 10.1210/en.2004-0392
- Niederau C, Berger M, Stremmel W, Starke A, Strohmeyer G, Ebert R, et al. Hyperinsulinaemia in non-cirrhotic haemochromatosis: impaired hepatic insulin degradation? Diabetologia 1984; 26(6): 441–4. doi: 10.1007/BF00262217
- Ferrannini E. Insulin resistance, iron, and the liver. Lancet 2000; 24; 355(9222): 2181–2. doi: 10.1016/S0140-6736(00)02397-7.
- Yao D, Shi W, Gou Y, Zhou X, Yee Aw T, Zhou Y, et al. Fatty acid-mediated intracellular iron translocation: a synergistic mechanism of oxidative injury. Free Radic Biol Med 2005; 39(10): 1385–98. doi: 10.1016/j.freeradbiomed.2005.07.015.
- Savolainen O, Lind MV, Bergstrom G, Fagerberg B, Sandberg AS, Ross A. Biomarkers of food intake and nutrient status are associated with glucose tolerance status and development of type 2 diabetes in older Swedish women. Am J Clin Nutr 2017; 106(5): 1302–10. doi: 10.3945/ajcn.117.152850.
- Li K, Wu K, Zhao Y, Huang T, Lou D, Yu X, et al. Interaction between marine- derived n-3 long chain polyunsaturated fatty acids and uric acid on glucose metabolism and risk of type 2 diabetes mellitus: a case-control study. Mar Drugs 2015; 13(9): 5564–78. doi: 10.3390/md13095564.
- Lapolla A, Sartore G, Della Rovere GR, Romanato G, Zambon S, Marin R, et al. Plasma fatty acids and lipoproteins in type 2 diabetic patients. Diabetes Metab Res Rev 2006; 22(3): 226–31. doi: 10.1002/dmrr.607.
- Sun Q, Ma J, Campos H, Hankinson SE, Hu FB. Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am J Clin Nutr. 2007; 86(1): 74–81. doi: 10.1093/ajcn/86.1.74.
- Jo S, An WS, Park Y. Erythrocyte n-3 polyunsaturated fatty acids and the risk of type 2 diabetes in Koreans: a case-control study. Ann Nutr Metab 2013; 63(4): 283–90. doi: 10.1159/000357018.
- Lee C, Liese A, Wagenknecht L, Lorenzo C, Haffner S, Hanley A. Fish consumption, insulin sensitivity and beta-cell function in the Insulin Resistance Atherosclerosis Study (IRAS). Nutr Metab Cardiovasc Dis 2013; 23(9): 829–35. doi: 10.1016/j.numecd.2012.06.001.
- Flachs P, Rossmeisl M, Kopecky J. The effect of n-3 fatty acids on glucose homeostasisand insulin sensitivity. Physiol Res 2014; 63(Suppl 1): S93–118. doi: 10.1186/s12944-017-0528-0.
- Alhassan A, Young J, Lean MEJ, Lara J. Consumption of fish and vascular risk factors: a systematic review and meta-analysis of intervention studies. Atherosclerosis 2017; 266: 87–94. doi: 10.1016/j.atherosclerosis.2017.09.028.
- Larsson SC, Orsini N. Fish consumption and the risk of stroke: a dose-response meta-analysis. Stroke 2011; 42(12): 3621–3. doi: 10.1161/STROKEAHA.111.630319.
- Djousse L, Akinkuolie AO, Wu JH, Ding EL, Gaziano JM. Fish consumption, omega-3 fatty acids and risk of heart failure: a meta-analysis. Clin Nutr 2012; 31(6): 846–53. doi: 10.1016/j.clnu.2012.05.010.
- Zheng J, Huang T, Yu Y, Hu X, Yang B, Li D. Fish consumption and CHD mortality: an updated meta-analysis of seventeen cohort studies. Public Health Nutr 2012; 15(4): 725–37. doi: 10.1017/S1368980011002254.
- Wheeler ML, Dunbar SA, Jaacks LM, Karmally W, Mayer-Davis EJ, Wylie- Rosett J, et al. Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010. Diabetes Care 2012; 35(2): 434–45. doi: 10.2337/dc11-2216.
- Belalcazar LM, Reboussin DM, Haffner SM, Reeves RS, Schwenke DC, Hoogeveen RC, et al. Marine omega-3 fatty acid intake: associations with cardiometabolic risk and response to weight loss intervention in the Look AHEAD (Action for Health in Diabetes) study. Diabetes Care 2010; 33(1): 197–9. doi: 10.2337/dc09-1235.
- Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014; 37(Suppl 1): S120–43. doi: 10.2337/dc14-S120.
- Akbari M, Tabrizi R, Lankarani KB, Heydari ST, Karamali M, Kashanian M, et al. The Effects of folate supplementation on diabetes biomarkers among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials. Horm Metab Res. 2018;50(2):93–105. doi: 10.1055/s-0043-125148.
Authors retain copyright of their work, with first publication rights granted to SNF Swedish Nutrition Foundation. Read the full Copyright- and Licensing Statement.