White sweet potato ameliorates hyperglycemia and regenerates pancreatic islets in diabetic mice
Abstract
Background: White sweet potato (WSP) has many potential beneficial effects on metabolic control and on diabetes- related insulin resistance. The antihyperglycemic effects of Tainung No. 10 (TNG10), a variety of WSP in Taiwan, warrant investigation.
Objective: To investigate the antidiabetic activity of WSP (Ipomoea batatas L. TNG10) and the mechanisms for interventions using whole leaves or tubers of WSP in diabetic mice.
Design: Mice were co-administered with streptozotocin and nicotinamide to induce diabetes and then treated with an experimental diet including either 10% WSP tuber (10%-T) and 30% WSP tuber (30%-T) or 0.5% WSP leaf (0.5%-L) and 5% WSP leaf (5%-L). After 8 weeks’ treatment, their plasma glycemic parameters, lipid profiles, and inflammatory marker were analyzed. Their pancreases were removed for histopathologic image analysis; proteins were also extracted from their muscles for phosphoinositide 3-kinase pathway analysis.
Results: The 30%-T or 5%-L mice had lower plasma glucose, insulin, glucose area under the curve (AUC), homeostatic model assessment of insulin resistance (HOMA-IR), alanine transaminase, triglyceride, and tumor necrosis factor alpha levels. In all diabetic mice, their Langerhans’s area was reduced by 60%; however, after 30% WSP-T or 5% WSP-L diets, the mice demonstrated significant restoration of the Langerhans’s areas (approximately 30%). Only in 5%-L mice, slightly increased expression of insulin-signaling pathway-related proteins, phosphorylated insulin receptor and protein kinase B and membrane glucose transporter 4 was noted.
Conclusions: WSP has antihyperglycemic effects by inducing pancreatic islet regeneration and insulin resistance amelioration. Therefore, WSP has potential applications in dietary diabetes management.
Downloads
References
- Zimmet P, Alberti KG, Magliano DJ, Bennett PH. Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol 2016; 12: 616. doi: 10.1038/nrendo.2016.105.
- Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 2017; 128: 40–50. doi: 10.1016/j.diabres.2017.03.024.
- Shulman GI. Cellular mechanisms of insulin resistance. J Clin Investig 2000; 106(2): 171–6. doi: 10.1172/JCI10583.
- Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444(7121): 840. doi: 10.1038/nature05482.
- Hales CN, Barker DJJD. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35(7): 595–601. doi: 10.1093/ije/dyt133.
- Leibowitz G, Kaiser N, Cerasi E. β-Cell failure in type 2 diabetes. J Diabetes Investig 2011; 2(2): 82–91. doi: 10.1111/j.2040-1124.2010.00094.x.
- Szkudelski TJEb, medicine. Streptozotocin–nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med 2012; 237(5): 481–90. doi: 10.1258/ebm.2012.011372.
- Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, et al. Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 1998; 47(2): 224–9. doi: 10.2337/diab.47.2.224.
- Nakamura T, Terajima T, Ogata T, Ueno K, Hashimoto N, Ono K, et al. Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide. Biol Pharm Bull 2006; 29(6): 1167–74. doi: 10.1248/bpb.29.1167.
- Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 2018; 14(11): 1483. doi: 10.7150/ijbs.27173.
- Minokoshi Y, Kahn CR, Kahn BB. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J Biol Chem 2003; 278(36): 33609–12. doi: 10.1074/jbc.R300019200.
- Costa MM, Violato NM, Taboga SR, Góes RM, Bosqueiro JR. Reduction of insulin signalling pathway IRS-1/IRS-2/AKT/mTOR and decrease of epithelial cell proliferation in the prostate of glucocorticoid-treated rats. Int J Exp Pathol 2012; 93(3): 188–95. doi: 10.1111/j.1365-2613.2012.00817.x.
- Copps K, White M. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012; 55(10): 2565–82. doi: 10.1007/s00125-012-2644-8.
- Govers R. Cellular regulation of glucose uptake by glucose transporter GLUT4. Adv Clin Chem 2014; 66: 173–240. doi: 10.1016/B978-0-12-801401-1.00006-2.
- Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799. doi: 10.1038/414799a.
- Ishiki M, Klip A. Minireview: recent developments in the regulation of glucose transporter-4 traffic: new signals, locations, and partners. Endocrinology 2005; 146(12): 5071–8. doi: 10.1210/en.2005-0850.
- Naowaboot J, Pannangpetch P, Kukongviriyapan V, Prawan A, Kukongviriyapan U, Itharat A. Mulberry leaf extract stimulates glucose uptake and GLUT4 translocation in rat adipocytes. Am J Chin Med 2012; 40(01): 163–75. doi: 10.1142/S0192415X12500139.
- Hsu CY, Shih HY, Chia YC, Lee CH, Ashida H, Lai YK, et al. Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol Nutr Food Res 2014; 58(6): 1168–76. doi: 10.1002/mnfr.201300691.
- Zhang Y, Liu X, Han L, Gao X, Liu E, Wang T. Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways. Food Chem 2013; 141(3): 2896–905. doi: 10.1016/j.foodchem.2013.05.121.
- Ying C, Mao Y, Chen L, Wang S, Ling H, Li W, et al. Bamboo leaf extract ameliorates diabetic nephropathy through activating the AKT signaling pathway in rats. Int J Biol Macromol 2017; 105: 1587–94. doi: 10.1016/j.ijbiomac.2017.03.124.
- Moch. Saiful B, Hye won J, Jongwon C, Jong-Ok P. Protective effect of white-skinned sweet potato (Ipomoea batatas L.) from Indonesia on streptozotocin-induced oxidative stress in rats. J Life Sci 2010; 20(11): 1569–76. doi: 10.5352/JLS.2010.20.11.1569.
- Kusano S, Abe H, Tamura H. Isolation of antidiabetic components from white-skinned sweet potato (Ipomoea batatas L.). Biosci Biotechnol Biochem 2001; 65(1): 109–14. doi: 10.1271/bbb.65.109.
- Kusano S, Abe H. Antidiabetic activity of white skinned sweet potato (Ipomoea batatas L.) in obese Zucker fatty rats. Biol Pharm Bull 2000; 23(1): 23–6. doi: 10.1248/bpb.23.23.
- Oki N, Nonaka S, Ozaki S. The effects of an arabinogalactan-protein from the white-skinned sweet potato (Ipomoea batatas L.) on blood glucose in spontaneous diabetic mice. Biosci Biotechnol Biochem 2011; 75(3): 596–8. doi: 10.1271/bbb.100711.
- Kusano S, Tamasu S, Nakatsugawa S. Effects of the white-skinned sweet potato (Ipomoea batatas L.) on the expression of adipocytokine in adipose tissue of genetic type 2 diabetic mice. Food Sci Technol Res 2005; 11(4): 369–72. doi: 10.3136/fstr.11.369.
- Ludvik B, Hanefeld M, Pacini G. Improved metabolic control by Ipomoea batatas (Caiapo) is associated with increased adiponectin and decreased fibrinogen levels in type 2 diabetic subjects. Diabetes Obes Metab 2008; 10(7): 586–92. doi: 10.1111/j.1463-1326.2007.00752.x.
- Ludvik B, Waldhäusl W, Prager R, Kautzky-Willer A, Pacini G. Mode of action of Ipomoea batatas (Caiapo) in type 2 diabetic patients. Metabolism 2003; 52(7): 875–80. doi: 10.1016/S0026-0495(03)00073-8.
- Ludvik BH, Mahdjoobian K, Waldhaeusl W, Hofer A, Prager R, Kautzky-Willer A, et al. The effect of Ipomoea batatas (Caiapo) on glucose metabolism and serum cholesterol in patients with type 2 diabetes: a randomized study. Diabetes Care 2002; 25(1): 239–40. doi: 10.2337/diacare.25.1.239.
- Shih CK, Chen CM, Hsiao TJ, Liu CW, Li SC. White sweet potato as meal replacement for overweight white-collar workers: a randomized controlled trial. J Nutrients 2019; 11(1): 165. doi: 10.3390/nu11010165.
- Chen C-M, Shih C-K, Su Y-J, Cheang K-U, Lo S-F, Li S-C. Evaluation of white sweet potato tube-feeding formula in elderly diabetic patients: a randomized controlled trial. Nutr Metab 2019; 16(1): 70. doi: 10.1186/s12986-019-0398-8.
- Reeves PG, Nielsen FH, Fahey GC, Jr. AIN-93 Purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. Nutr 1993; 123(11): 1939–51. doi: 10.1093/jn/123.11.1939.
- Shimizu R, Sakazaki F, Okuno T, Nakamuro K, Ueno H. Difference in glucose intolerance between C57BL/6J and ICR strain mice with streptozotocin/nicotinamide-induced diabetes. Biomed Res 2012; 33(1): 63–6. doi: 10.2220/biomedres.33.63.
- Christensen SD, Mikkelsen L, Fels J, Bodvarsdottir T, Hansen A. Quality of plasma sampled by different methods for multiple blood sampling in mice. Lab Anim 2009; 43(1): 65–71. doi: 10.1258/la.2008.007075.
- Lee B, Shi L, Kassel DB, Asakawa T, Takeuchi K, Christopher RJ. Pharmacokinetic, pharmacodynamic, and efficacy profiles of alogliptin, a novel inhibitor of dipeptidyl peptidase-4, in rats, dogs, and monkeys. Eur J Pharmacol 2008; 589(1–3):306–14. doi: 10.1016/j.ejphar.2008.04.047.
- Cha DR, Zhang X, Zhang Y, Wu J, Su D, Han JY, et al. Peroxisome proliferator–activated receptor α/γ dual agonist tesaglitazar attenuates diabetic nephropathy in db/db mice. Diabetes 2007; 56(8): 2036–45. doi: 10.2337/db06-1134.
- Mohanraj R, Sivasankar S. Sweet potato (Ipomoea batatas [L.] Lam) – a valuable medicinal food: a review. J Med Food 2014; 17(7): 733–41. doi: 10.1089/jmf.2013.2818.
- Ayeleso TB, Ramachela K, Mukwevho E. A review of therapeutic potentials of sweet potato: pharmacological activities and influence of the cultivar. Trop J Pharm Res 2016; 15(12): 2751–61. doi: 10.4314/tjpr.v15i12.31.
- Lencioni C, Lupi R, Del Prato SJCdr. β-cell failure in type 2 diabetes mellitus. Curr Diabetes Rep 2008; 8(3): 179–84. doi: 10.1007/s11892-008-0031-0.
- Prentki M, Nolan CJJTJoci. Islet β cell failure in type 2 diabetes. J Clin Investig 2006; 116(7): 1802–12. doi: 10.1172/JCI29103.
- Sunarti, Susilowati R, Royhan A . Effects of white-skinned sweet potato (Ipomoea batatas L.) on pancreatic beta cells and insulin expression in streptozotocin induced diabetic rats. Majalah Kesehatan Pharmamedika 2009; 1(2): 45–9. https://www.researchgate.net/publication/267987188.
- Musilová J, Bystrická J, Árvay J, Harangózo LJP. Polyphenols and phenolic acids in sweet potato (Ipomoea batatas L.) roots. Slovak J Food Sci 2017; 11(1): 82–7. doi: 10.5219/705.
- Song E-K, Hur H, Han M-K. Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Archiv Pharm Res 2003; 26(7): 559–63. doi: 10.1007/BF02976881.
- Bansal P, Paul P, Mudgal J, Nayak PG, Pannakal ST, Priyadarsini KI, et al. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high-fat diet/streptozotocin-induced diabetes in mice. Exp Toxicol Pathol 2012; 64(6): 651–8. doi: 10.1016/j.etp.2010.12.009.
- Bae U-J, Jung E-S, Jung S-J, Chae S-W, Park B-H. Mulberry leaf extract displays antidiabetic activity in db/db mice via Akt and AMP-activated protein kinase phosphorylation. Food Nutr Res 2018; 62: 1473. doi: 10.29219/fnr.v62.1473.
- Vareda PMP, Saldanha LL, Camaforte NAdP, Violato NM, Dokkedal AL, Bosqueiro JR, et al. Myrcia bella leaf extract presents hypoglycemic activity via PI3k/Akt insulin signaling pathway. Evid Based Complement Alternat Med 2014; 2014: 543606. doi: 10.1155/2014/543606.
- Robertson MD. Dietary-resistant starch and glucose metabolism. Curr Opin Clin Nutr Metab Care 2012; 15(4): 362–7. doi: 10.1097/MCO.0b013e3283536931.
Authors retain copyright of their work, with first publication rights granted to SNF Swedish Nutrition Foundation. Read the full Copyright- and Licensing Statement.