Capsaicin regulates lipid metabolism through modulation of bile acid/gut microbiota metabolism in high-fat-fed SD rats

  • Ting Gong Southwestuniversity
  • Haizhu Wang
  • Shanli Liu
  • Min Zhang
  • Xiong Liu
Keywords: Capsaicin, Bile acid, Gut Microbiota, Metabolism, High-fat diet

Abstract

Capsaicin (CAP) is one of the active ingredients found in chili peppers and has been shown to reduce fat. This study aimed to explore the mechanisms of CAP activity by investigating intestinal microorganisms and bile acids (BAs). This study utilized 16S RNA sequencing to detect gut microbiota in cecal contents, and BAs in Sprague Dawley (SD) rats were also investigated. The results showed that 1) CAP increased the levels of chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), β-muricholic acid (β-MCA), and tauro-β-muricholic acid sodium salt (T-β-MCA), which can regulate farnesoid X receptor (FXR) to inhibit Fgf15, increased CYP7A1 expression to lower triglycerides (TG) and total cholesterol (TC); 2) CAP decreased the abundance of Firmicutes and promoted the presence of specific fermentative bacterial populations, like Akkermansia; meanwhile, less optimal dose can reduce Desulfovibrio; 3) CAP decreased inflammatory factors IL-6 and IL-1β, and increased transient receptor potential channel of vanilloid subtype 1 (TRPV1) to regulate lipid metabolism, fasting plasma glucose and insulin resistance. In conclusion, CAP can reduce fat accumulation by regulating BAs, microorganisms, and short-chain fatty acids.

Downloads

Download data is not yet available.

References


  1. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science 2008; 320: 1647–51. doi: 10.1126/science.1155725

  2. Li X, Guo J, Ji K, Zhang P. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Sci Rep 2016; 6: 32953. doi: 10.1038/srep32953

  3. Martinez KB, Leone V, Chang EB. Microbial metabolites in health and disease: navigating the unknown in search of function. J Biol Chem 2017; 292: 8553–9. doi: 10.1074/jbc.R116.752899

  4. Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Archiv Microbiol 2018; 200: 203–17. doi: 10.1007/s00203-017-1459-x

  5. Li JM, Li LY, Xuan Q, Pascal D, Laurent D, Limbu SM, et al. Inhibited carnitine synthesis causes systemic alteration of nutrient metabolism in zebrafish. Front Physiol 2018; 9: 509. doi: 10.3389/fphys.2018.00509

  6. Wang J, Jia H. Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol 2016; 14: 508–22. doi: 10.1038/nrmicro.2016.83

  7. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341: 1079-U49. doi: 10.1126/science.1241214

  8. Xie Z-M, Zhou T, Liao H-Y, Ye Q, Liu S, Qi L, et al. Effects of Ligustrum robustum on gut microbes and obesity in rats. World J Gastroenterol 2015; 21: 13042–54. doi: 10.3748/wjg.v21.i46.13042

  9. Salehi B, Sharifi-Rad J, Cappellini F, Reiner Z, Zorzan D, Imran M, et al. The therapeutic potential of anthocyanins: current approaches based on their molecular mechanism of action. Front Pharmacol 2020; 11: 1300. doi: 10.3389/fphar.2020.01300

  10. Perez-Gonzalez A, Prejano M, Russo N, Marino T, Galano A. Capsaicin, a Powerful (OH)-O-center dot-Inactivating Ligand. Antioxidants 2020; 9: 1247. doi: 10.3390/antiox9121247

  11. Ross HR, Gilmore AJ, Connor M. Inhibition of human recombinant T-type calcium channels by the endocannabinoid N-arachidonoyl dopamine. Br J Pharmacol 2009; 156: 740–50. doi: 10.1111/j.1476-5381.2008.00072.x

  12. Zhang LL, Liu DY, Ma LQ, Luo ZD, Cao TB, Zhong J, et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res 2007; 100: 1063–70. doi: 10.1161/01.RES.0000262653.84850.8b

  13. Wang Y, Tang C, Tang Y, Yin H, Liu X. Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations. Food Nutr Res 64: 3525. doi: 10.29219/fnr.v64.3525

  14. Baboota RK, Murtaza N, Jagtap S, Singh DP, Karmase A, Kaur J, et al. Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice. J Nutr Biochem 2014; 25: 893–902. doi: 10.1016/j.jnutbio.2014.04.004

  15. Shen W, Shen M, Zhao X, Zhu H, Yang Y, Lu S, et al. Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the gut bacterium Akkermansia muciniphila. Front Microbiol 2017; 8: 1–10. doi: 10.3389/fmicb.2017.00272

  16. Kang C, Wang B, Kaliannan K, Wang X, Lang H, Hui S, et al. Gut microbiota mediates the protective effects of dietary capsaicin against chronic low-grade inflammation and associated obesity induced by high-fat diet (vol 8, 2017). Mbio 2017; 8: 00470-17. doi: 10.1128/mBio.00900-17

  17. Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol 2010; 26: 5–11. doi: 10.1097/MOG.0b013e328333d751

  18. O’Neill J, Brock C, Olesen AE, Andresen T, Nilsson M, Dickenson AH. Unravelling the mystery of capsaicin: a tool to understand and treat pain. Pharmacol Rev 2012; 64: 939–71. doi: 10.1124/pr.112.006163

  19. Wu S, Pan H, Tan S, Ding C, Huang G, Liu G, et al. In vitro inhibition of lipid accumulation induced by oleic acid and in vivo pharmacokinetics of chitosan microspheres (CTMS) and chitosan-capsaicin microspheres (CCMS). Food Nutr Res 2017; 61: 1331658. doi: 10.1080/16546628.2017.1331658

  20. Chanda S, Bashir M, Babbar S, Koganti A, Bley K. In vitro hepatic and skin metabolism of capsaicin. Drug Metab Dispos 2008; 36: 670–5. doi: 10.1124/dmd.107.019240

  21. Ko MC, Butelman ER, Woods JH. The role of peripheral mu opioid receptors in the modulation of capsaicin-induced thermal nociception in rhesus monkeys. J Pharmacol Exp Ther 1998; 286: 150–6.

  22. Zhang L, Fang G, Zheng L, Chen Z, Liu X. Hypocholesterolemic effect of capsaicinoids in rats fed diets with or without cholesterol. J Agric Food Chem 2013; 61: 4287–93. doi: 10.1021/jf304471t

  23. Afrose S, Hossain MS, Maki T, Tsujii H. Karaya root saponin exerts a hypocholesterolemic response in rats fed a high-cholesterol diet. Nutr Res 2009; 29: 350–4. doi: 10.1016/j.nutres.2009.05.008

  24. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957; 226: 497–509. doi: 10.1016/S0021-9258(18)64849-5

  25. Lei Z. Research on hypocholesterolemic effects and mechanism of capsaicinoids on cholesterol metabolic in vivo and viro, ed. Southwest University, China; 2013.

  26. Korner CJ, Du X, Vollmer ME, Pajerowska-Mukhtar KM. Endoplasmic reticulum stress signaling in plant immunity-at the crossroad of life and death. Int J Mol Sci 2015; 16: 26582–98. doi: 10.3390/ijms161125964

  27. Limei B, Yuanpei Z, Jun Z, Fuguang L, Lu M, Huang H, et al. The effect of cholesterol-lowering probiotics on bile acid metabolism of non-alcoholic fatty liver disease and mechanism. Chin J Microbiol Immunol 2016; 36: 110–6.

  28. Hui S, Liu Y, Chen M, Wang X, Lang H, Zhou M, et al. Capsaicin improves glucose tolerance and insulin sensitivity through modulation of the gut microbiota-bile acid-FXR axis in type 2 diabetic db/db Mice. Mol Nutr Food Res 2019; 63: 00608. doi: 10.1002/mnfr.201900608

  29. Huang C-N, Wang C-J, Lin C-L, Lin H-T, Peng C-H. The nutraceutical benefits of subfractions of Abelmoschus esculentus in treating type 2 diabetes mellitus. PLoS One 2017; 12: 9065. doi: 10.1371/journal.pone.0189065

  30. Wang H, Lu Y, Yan Y, Tian S, Zheng D, Leng D, et al. Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets. Front Cell Infect Microbiol 2020; 9: 00455. doi: 10.3389/fcimb.2019.00455

  31. Lin P-H, Chang C-C, Wu K-H, Shih C-K, Chiang W, Chen H-Y, et al. Dietary glycotoxins, advanced glycation end products, inhibit cell proliferation and progesterone secretion in ovarian granulosa cells and mimic PCOS-like symptoms. Biomolecules 2019; 9: 327. doi: 10.3390/biom9080327

  32. Eguchi M, Ohta M, Yamato H. The effects of single long and accumulated short bouts of exercise on cardiovascular risks in male Japanese workers: a randomized controlled study. Ind Health 2013; 51: 563–71. doi: 10.2486/indhealth.2013-0023

  33. Wang L, Li J, Du Y, Sun T, Na L, Wang Z. The relationship between sleep onset time and cardiometabolic biomarkers in Chinese communities: a cross-sectional study. BMC Public Health 2020; 20: 374. doi: 10.1186/s12889-020-08516-9

  34. Hjorth MF, Due A, Larsen TM, Astrup A. Pretreatment fasting plasma glucose modifies dietary weight loss maintenance success: results from a stratified RCT. Obesity 2017; 25: 2045–8. doi: 10.1002/oby.22004

  35. Fei Y, Wang Y, Pang Y, Wang W, Zhu D, Xie M, et al. Xylooligosaccharide modulates gut microbiota and alleviates colonic inflammation caused by high fat diet induced obesity. Front Physiol 2020; 10: 1601. doi: 10.3389/fphys.2019.01601

  36. Shan Y, Zhang S, Gao B, Liang S, Zhang H, Yu X, et al. Adipose tissue SIRT1 regulates insulin sensitizing and anti-inflammatory effects of berberine. Front Pharmacol 2020; 11: 591227. doi: 10.3389/fphar.2020.591227

  37. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005; 115: 1111–9. doi: 10.1172/JCI25102

  38. Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes – results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetes 2003; 52: 812–7. doi: 10.2337/diabetes.52.3.812

  39. Chiang JYL. Targeting bile acids and lipotoxicity for NASH treatment. Hepatol Commun 2017; 1: 1002–4. doi: 10.1002/hep4.1127

  40. Navarro SL, Levy L, Curtis KR, Elkon I, Kahsai OJ, Ammar HS, et al. Effect of a flaxseed lignan intervention on circulating bile acids in a placebo-controlled randomized, crossover trial. Nutrients 2020; 12: 1837. doi: 10.3390/nu12061837

  41. da Silva MT, Mujica-Coopman MF, Figueiredo ACC, Hampel D, Vieira LS, Farias DR, et al. Maternal plasma folate concentration is positively associated with serum total cholesterol and low-density lipoprotein across the three trimesters of pregnancy. Sci Rep 2020; 10: 20141. doi: 10.1038/s41598-020-77231-7

  42. Hou G, Peng W, Wei L, Li R, Yuan Y, Huang X, et al. Lactobacillus delbrueckii interfere with bile acid enterohepatic circulation to regulate cholesterol metabolism of growing-finishing pigs via its bile salt hydrolase activity. Front Nutr 2020; 7: 617676. doi: 10.3389/fnut.2020.617676

  43. Vahidi Ferdowsi P, Ahuja KDK, Beckett JM, Myers S. TRPV1 activation by capsaicin mediates glucose oxidation and atp production independent of insulin signalling in mouse skeletal muscle cells. Cells 2021; 10: 1560. doi: 10.3390/cells10061560

  44. Kalhan SC. Microbial fermentation of starch: its impact on the range of acceptable carbohydrate intake. J Pediatr Gastroenterol Nutr 2018; 66: S42–5. doi: 10.1097/MPG.0000000000001827

  45. Northcott CA, Fink GD, Garver H, Haywood JR, Laimon-Thomson EL, McClain JL, et al. The development of hypertension and hyperaldosteronism in a rodent model of life-long obesity. Endocrinology 2012; 153: 1764–73. doi: 10.1210/en.2011-1176

  46. van Avesaat M, Troost FJ, Westerterp-Plantenga MS, Helyes Z, Le Roux CW, Dekker J, et al. Capsaicin-induced satiety is associated with gastrointestinal distress but not with the release of satiety hormones. Am J Clin Nutr 2016; 103: 305–13. doi: 10.3945/ajcn.115.123414

  47. Zhang S, Ma X, Zhang L, Sun H, Liu X. Capsaicin reduces blood glucose by increasing insulin levels and glycogen content better than capsiate in streptozotocin-induced diabetic rats. J Agr Food Chem 2017; 65: 2323–30. doi: 10.1021/acs.jafc.7b00132

  48. Moschen AR, Wieser V, Tilg H. Dietary factors: major regulators of the gut’s microbiota. Gut Liver 2012; 6: 411–6. doi: 10.5009/gnl.2012.6.4.411

  49. Dridi B, Raoult D, Drancourt M. Archaea as emerging organisms in complex human microbiomes. Anaerobe 2011; 17: 56–63. doi: 10.1016/j.anaerobe.2011.03.001

  50. Ormerod KL, Wood DLA, Lachner N, Gellatly SL, Daly JN, Parsons JD, et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 2016; 4: 36. doi: 10.1186/s40168-016-0181-2

  51. Kles KA, Chang EB, Short-chain fatty acids impact on intestinal adaptation inflammation, carcinoma, and failure. Gastroenterology 2006; 130: S100–5. doi: 10.1053/j.gastro.2005.11.048

  52. Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 2016; 7. doi: 10.1038/ncomms12015

  53. Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015; 64: 872–83. doi: 10.1136/gutjnl-2014-307142

  54. Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, et al. Dietary polyphenols promote growth of the gut bacterium akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 2015; 64: 2847–58. doi: 10.2337/db14-1916

  55. Rowan F, Docherty NG, Murphy M, Murphy B, Coffey JC, O’Connell PR. Desulfovibrio bacterial species are increased in ulcerative colitis. Dis Colon Rectum 2010; 53: 1530–6. doi: 10.1007/DCR.0b013e3181f1e620

  56. Khan TJ, Ahmed YM, Zamzami MA, Mohamed SA, Khan I, Baothman OAS, et al. Effect of atorvastatin on the gut microbiota of high fat diet-induced hypercholesterolemic rats. Sci Rep 2018; 8: 662. doi: 10.1038/s41598-017-19013-2

  57. Martoni CJ, Labbe A, Ganopolsky JG, Prakash S, Jones ML. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242. Gut Microbes 2015; 6: 57–65. doi: 10.1080/19490976.2015.1005474

  58. Ji F, Zhang D, Shao Y, Yu X, Liu X, Shan D, et al. Changes in the diversity and composition of gut microbiota in pigeon squabs infected with Trichomonas gallinae. Sci Reprts 2020; 10: 19978. doi: 10.1038/s41598-020-76821-9

  59. Liang H, Ji K, Ge X, Xi B, Ren M, Chen X. Tributyrin plays an important role in regulating the growth and health status of juvenile blunt snout bream (Megalobrama amblycephala), as evidenced by pathological examination. Front Immunol 2021; 12: 652294. doi: 10.3389/fimmu.2021.652294

  60. Staels B, Fonseca VA. Bile acids and metabolic regulation mechanisms and clinical responses to bile acid sequestration. Diabetes Care 2009; 32: S237–45. doi: 10.2337/dc09-S355

  61. Prawitt J, Abdelkarim M, Stroeve JHM, Popescu I, Duez H, Velagapudi VR, et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 2011; 60: 1861–71. doi: 10.2337/db11-0030

  62. Zhu Y, Li F, Guo GL, Tissue-specific function of farnesoid X receptor in liver and intestine. Pharmacol Res 2011; 63: 259–65. doi: 10.1016/j.phrs.2010.12.018

  63. Liu L, Liu Z, Li H, Cao Z, Li W, Song Z, et al. Naturally occurring TPE-CA maintains gut microbiota and bile acids homeostasis via FXR signaling modulation of the liver-gut axis. Front Pharmacol 2020; 11: 00012. doi: 10.3389/fphar.2020.00012

  64. Wu H, Liu G, He Y, Da J, Xie B. Obeticholic acid protects against diabetic cardiomyopathy by activation of FXR/Nrf2 signaling in db/db mice. Eur J Pharmacol 2019; 858: 172393. doi: 10.1016/j.ejphar.2019.05.022

  65. Gonzalez FJ, Jiang C, Xie C, Patterson AD. Intestinal farnesoid X receptor signaling modulates metabolic disease. Dig Dis 2017; 35: 178–84. doi: 10.1159/000450908

  66. Li C, Zhou W, Li M, Shu X, Zhang L, Ji G. Salvia-Nelumbinis naturalis extract protects mice against MCD diet-induced steatohepatitis via activation of colonic FXR-FGF15 pathway. Biomed Pharmacother 2021; 139: 111587. doi: 10.1016/j.biopha.2021.111587

  67. Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall H-U, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17: 225–35. doi: 10.1016/j.cmet.2013.01.003

  68. Chavez JA, Summers SA. A ceramide-centric view of insulin resistance. Cell Metab 2012; 15: 585–94. doi: 10.1016/j.cmet.2012.04.002

  69. Cortez MY, Torgan CE, Brozinick JT, Miller RH, Ivy JL. Effects of pyruvate and dihydroxyacetone consumption on the growth and metabolic state of obese Zucker rats. Am J Clin Nutr 1991; 53: 847–53. doi: 10.1093/ajcn/53.4.847

  70. Li T, Owsley E, Matozel M, Hsu P, Novak CM, Chiang JYL. Transgenic expression of cholesterol 7 alpha-hydroxylase in the liver prevents high-fat diet induced obesity and insulin resistance in mice. Hepatology 2010; 52: 678–90. doi: 10.1002/hep.23721

  71. Wankhede S, Mohan V, Thakurdesai P. Beneficial effects of fenugreek glycoside supplementation in male subjects during resistance training: a randomized controlled pilot study (vol 5, pg 176, 2016). J Sport Health Sci 2018; 7: 251. doi: 10.1016/j.jshs.2018.03.001

  72. Brito R, Sheth S, Mukherjea D, Rybak LP, Ramkumar V. TRPV1: a potential drug target for treating various diseases. Cells 2014; 3: 517–45. doi: 10.3390/cells3020517

Published
2022-05-26
How to Cite
Gong T., Wang H., Liu S., Zhang M., & Liu X. (2022). Capsaicin regulates lipid metabolism through modulation of bile acid/gut microbiota metabolism in high-fat-fed SD rats. Food & Nutrition Research, 66. https://doi.org/10.29219/fnr.v66.8289
Section
Original Articles