Antiobesity effect of Kaempferia parviflora accompanied by inhibition of lipogenesis and stimulation of lipolysis

  • Seong-Hoo Park Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
  • Jeongjin Park Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea
  • Minhee Lee Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
  • Jinhak Kim R&D Division, Daehan Chemtech Co. Ltd. Seoul, Republic of Korea
  • Sangwon Eun R&D Division, Daehan Chemtech Co. Ltd. Seoul, Republic of Korea
  • Woojin Jun Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea
  • Ok-Kyung Kim Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea
  • Jeongmin Lee Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
Keywords: lipogenesis, adipogenesis, lipolysis, Kaempferia parviflora, obesity

Abstract

Background: Obesity occurs when energy intake is excessive compared to energy expenditure, resulting in the excessive storage of triglyceride in adipose tissue.

Objective: The present study aimed to investigate the antiobesity effects of Kaempferia parviflora extracts (PF) in high-fat diet (HFD)-induced obese mice and 3T3-L1 adipocytes to demonstrate the lipid mechanisms underlying these effects.

Design: Mice were fed with a normal diet (AIN93G normal diet), HFD (60% HFD), Met (HFD containing metformin 250 mg/kg b.w.), PF50 (HFD containing PF 50 mg/kg b.w.), and PF100 (HFD containing PF 100 mg/kg b.w.) for 12 weeks.

Results: Body weight gain, adipose tissue weight, adipose tissue mass, and size of adipocytes were significantly decreased by PF supplementation in HFD-fed mice. Moreover, PF supplementation suppressed the adipogenesis and lipogenesis pathways and activated the lipolysis and thermogenesis pathways in the adipose tissues of HFD-fed mice.

Conclusions: PF treatment during the differentiation of 3T3-L1 cells suppressed adipogenesis and lipogenesis and PF treatment after differentiation activated lipolysis and thermogenesis. Thus, we suggest that PF is effective for weight loss by directly affecting the lipid metabolism of adipocytes.

Downloads

Download data is not yet available.

References


1.
Grundy SM. Obesity, metabolic syndrome, and cardiovascular disease. J Clin Endocrinol Metab 2004; 89(6): 2595–600. doi: 10.1210/jc.2004-0372


2.
Kopp W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes 2019; 12: 2221–36. doi: 10.2147/DMSO.S216791


3.
Astrup A, Dyerberg J, Selleck M, Stender S. Nutrition transition and its relationship to the development of obesity and related chronic diseases. Obes Rev 2008; 9: 48–52. doi: 10.1111/j.1467-789X.2007.00438.x


4.
Mendoza JA, Drewnowski A, Christakis DA. Dietary energy density is associated with obesity and the metabolic syndrome in U.S. adults. Diabetes Care 2007; 30(4): 974–9. doi: 10.2337/dc06-2188


5.
Gray SL, Vidal-Puig AJ. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev 2007; 65(6): 7–12. doi: 10.1301/nr.2007.jun.S7-S12


6.
Smith U, Kahn BB. Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med 2016; 280(5): 465–75. doi: 10.1111/joim.12540


7.
Gaidhu MP, Fediuc S, Anthony NM, So M, Mirpourian M, Perry RL, Ceddia RB. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL. J Lipid Res 2009; 50(4): 704–15. doi: 10.1194/jlr.M800480-JLR200


8.
Paramee S, Sookkhee S, Sakonwasun C, Na Takuathung M, Mungkornasawakul P, Nimlamool W, Potikanond S. Anti-cancer effects of Kaempferia parviflora on ovarian cancer SKOV3 cells. BMC Complement Altern Med 2018; 18(1): 178. doi: 10.1186/s12906-018-2241-6


9.
Horigome S, Yoshida I, Tsuda A, Harada T, Yamaguchi A, Yamazaki K, et al. Identification and evaluation of anti-inflammatory compounds from Kaempferia parviflora. Biosci Biotechnol Biochem 2014; 78(5): 851–60. doi: 10.1080/09168451.2014.905177


10.
Yenjai C, Prasanphen K, Daodee S, Wongpanich V, Kittakoop P. Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 2004; 75(1): 89–92. doi: 10.1016/j.fitote.2003.08.017


11.
Yun JM, Jung J, Park SH, Seo YH, Lee JK, Bae MH, et al. ESunflower (Helianthus annuus) seed extract suppresses the lipogenesis pathway and stimulates the lipolysis pathway in high-fat diet-induced obese mice. Food Nutr Res 2022; 66: 8587. doi: 10.29219/fnr.v66.8587


12.
Park SJ, Lee M, Oh DH, Kim JL, Park MR, Kim TG, et al. Emblica officinalis and Hordeum vulgare L. mixture regulates lipolytic activity in differentiated 3T3-L1 cells. J Med Food 2021; 24(2): 172–9. doi: 10.1089/jmf.2020.4810


13.
Yoshino S, Kim M, Awa R, Kuwahara H, Kano Y, Kawada T. Kaempferia parviflora extract increases energy consumption through activation of BAT in mice. Food Sci Nutr 2014; 2(6): 634–7. doi: 10.1002/fsn3.144


14.
Hui F, Zhang Y, Ren T, Li X, Zhao M, Zhao Q. Role of metformin in overweight and obese people without diabetes: a systematic review and network meta-analysis. Eur J Clin Pharmacol 2019; 75(4): 437–50. doi: 10.1007/s00228-018-2593-3


15.
Reusch JE, Colton LA, Klemm DJ. CREB activation induces adipogenesis in 3T3-L1 cells. Mol Cell Biol 2000; 20(3): 1008–20. doi: 10.1128/MCB.20.3.1008-1020.2000


16.
Bost F, Aouadi M, Caron L, Binétruy B. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 2005; 87(1): 51–6. doi: 10.1016/j.biochi.2004.10.018


17.
Hillgartner FB, Salati LM, Goodridge AG. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev 1995; 75(1): 47–76. doi: 10.1152/physrev.1995.75.1.47


18.
Frayn KN, Arner P, Yki-Järvinen H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem 2006; 42: 89–103. doi: 10.1042/bse0420089


19.
Bischoff SC, Schweinlin A. Obesity therapy. Clin Nutr ESPEN 2020; 38: 9–18. doi: 10.1016/j.clnesp.2020.04.013


20.
Jimenez-Munoz CM, López M, Albericio F, Makowski K. Targeting energy expenditure-drugs for obesity treatment. Pharmaceuticals (Basel) 2021; 14(5): 435. doi: 10.3390/ph14050435


21.
Tak YJ, Lee SY. Long-term efficacy and safety of anti-obesity treatment: where do we stand? Curr Obes Rep 2021; 10(1): 14–30. doi: 10.1007/s13679-020-00422-w


22.
Shimada T, Horikawa T, Ikeya Y, Matsuo H, Kinoshita K, Taguchi T, et al. Preventive effect of Kaempferia parviflora ethyl acetate extract and its major components polymethoxyflavonoid on metabolic diseases. Fitoterapia 2011; 82(8): 1272–8. doi: 10.1016/j.fitote.2011.08.018


23.
Akase T, Shimada T, Terabayashi S, Ikeya Y, Sanada H, Aburada M. Antiobesity effects of Kaempferia parviflora in spontaneously obese type II diabetic mice. J Nat Med 2011; 65(1): 73–80. doi: 10.1007/s11418-010-0461-2


24.
Saokaew S, Wilairat P, Raktanyakan P, Dilokthornsakul P, Dhippayom T, Kongkaew C, et al. Clinical effects of Krachaidum (Kaempferia parviflora): A systematic review. J Evid Based Complementary Altern Med 2017; 22(3): 413–28. doi: 10.1177/2156587216669628
Published
2023-07-03
How to Cite
Park S.-H., Park J., Lee M., Kim J., Eun S., Jun W., Kim O.-K., & Lee J. (2023). Antiobesity effect of <em>Kaempferia parviflora</em&gt; accompanied by inhibition of lipogenesis and stimulation of lipolysis. Food & Nutrition Research, 67. https://doi.org/10.29219/fnr.v67.9374
Section
Original Articles

Most read articles by the same author(s)