Sunflower (Helianthus annuus) seed extract suppresses the lipogenesis pathway and stimulates the lipolysis pathway in high-fat diet-induced obese mice
Abstract
Background: Obesity, abnormal fat accumulation in the adipose tissue, has become a serious global public health problem as it increases an individual’s risk of developing various diseases.
Objective: This study sought to determine whether the extract from sunflower seed (SUNCA) prevents the development of obesity in high-fat diet (HFD)-induced obese mice.
Design: C57BL/6J mice were fed with AIN93G normal diet (Normal diet), 60% HFD, HFD containing Catechin 100 mg/kg body weight (b.w.) (Catechin), HFD containing SUNCA 25 mg/kg b.w. (SUNCA 25), HFD containing SUNCA 50 mg/kg b.w. (SUNCA 50), or HFD containing SUNCA 100 mg/kg b.w. (SUNCA 100) for 15 weeks.
Results: Body weight gain, food efficiency rate, adipose tissue weight, adipose tissue mass, size of adipocytes, and serum levels of triglyceride, total cholesterol, very low-density lipoprotein/low-density lipoprotein (VLDL/LDL)-cholesterol, aspartate aminotransferase, and alanine aminotransferase were significantly decreased by SUNCA supplementation in HFD-fed mice. Furthermore, SUNCA supplementation decreased the expression of proteins related to the adipogenesis and lipogenesis pathways and increased the expression of proteins related to the lipolysis and thermogenesis pathways in the adipose tissues of HFD-induced obese mice.
Conclusions: Altogether, SUNCA might prevent obesity by suppressing the adipogenesis/lipogenesis pathway and stimulating the lipolysis/thermogenesis pathway in HFD-induced obese mice.
Downloads
References
- Frühbeck G, Toplak H, Woodward E, Yumuk V, Maislos M, Oppert JM. Obesity: the gateway to ill health – an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts 2013; 6(2): 117–20. doi: 10.1159/000350627
- Roth CL, Jain V. Rising obesity in children: a serious public health concern. Indian J Pediatr 2018; 85(6): 461–2. doi: 10.1007/s12098-018-2639-7
- Krzysztoszek J, Laudańska-Krzemińska I, Bronikowski M. Assessment of epidemiological obesity among adults in EU countries. Ann Agric Environ Med 2019; 26(2): 341–9. doi: 10.26444/aaem/97226
- Angel A. Pathophysiology of obesity. Can Med Assoc J 1974; 110(5): 540–8.
- Kandror KV. Mammalian target of rapamycin complex 1 and FoxO1 in the transcriptional control of lipolysis and de novo lipogenesis. Curr Opin Endocrinol Diabetes Obes 2017; 24(5): 326–31. doi: 10.1097/MED.0000000000000352
- Gregoire FM. Adipocyte differentiation: from fibroblast to endocrine cell. Exp Biol Med 2001; 226(11): 997–1002. doi: 10.1177/153537020122601106
- Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev 2000; 14(11): 1293–307. doi: 10.1101/gad.14.11.1293
- Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2001; 2(4): 282–6. doi: 10.1093/embo-reports/kve071
- Marshall S. Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: a nutritional perspective of diabetes, obesity, and cancer. Sci STKE 2006; 2006(346): 7. doi: 10.1126/stke.3462006re7
- Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Rydén M, et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 2005; 54(11): 3190–7. doi: 10.2337/diabetes.54.11.3190
- Martin ML, Jensen MD. Effects of body fat distribution on regional lipolysis in obesity. J Clin Invest 1991; 88(2): 609–13. doi: 10.1172/JCI115345
- Birari RB, Bhutani KK. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today 2007; 12(19–20): 879–89. doi: 10.1016/j.drudis.2007.07.024
- Yun JW. Possible anti-obesity therapeutics from nature – a review. Phytochemistry 2010; 71(14–15): 1625–41. doi: 10.1016/j.phytochem.2010.07.011
- Guo S, Ge Y, Na Jom K. A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chem Cent J 2017; 11(1): 95. doi: 10.1186/s13065-017-0328-7
- Kibinza S, Bazin J, Bailly C, Farrant JM, Corbineau F, El-Maarouf-Bouteau H. Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci 2011; 181(3): 309–15. doi: 10.1016/j.plantsci.2011.06.003
- Náthia-Neves G, Alonso E. Valorization of sunflower by-product using microwave-assisted extraction to obtain a rich protein flour: recovery of chlorogenic acid, phenolic content and antioxidant capacity. Food Bioprod Process. 2021; 125: 57–67. doi: 10.1016/j.fbp.2020.10.008
- Leverrier A, Daguet D, Calame W, Dhoye P, Kodimule SP. Helianthus annuus seed extract affects weight and body composition of healthy obese adults during 12 weeks of consumption: a randomized, double-blind, placebo-controlled pilot study. Nutrients 2019; 11(5): 1080. doi: 10.3390/nu11051080
- de Oliveira Filho JG, Egea MB. Sunflower seed byproduct and its fractions for food application: an attempt to improve the sustainability of the oil process. J Food Sci 2021; 86(5): 1497–510. doi: 10.1111/1750-3841.15719
- Salas JJ, Martínez-Force E, Harwood JL, Venegas-Calerón M, Aznar-Moreno JA, Moreno-Pérez AJ, et al. Biochemistry of high stearic sunflower, a new source of saturated fats. Prog Lipid Res 2014; 55: 30–42. doi: 10.1016/j.plipres.2014.05.001
- Della Vedova MC, Muñoz MD, Santillan LD, Plateo-Pignatari MG, Germanó MJ, Rinaldi Tosi ME, et al. A mouse model of diet-induced obesity resembling most features of human metabolic syndrome. Nutr Metab Insights 2016; 9: 93–102. doi: 10.4137/NMI.S32907
- Murase T, Nagasawa A, Suzuki J, Hase T, Tokimitsu I. Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes Relat Metab Disord 2002; 26(11): 1459–64. doi: 10.1038/sj.ijo.0802141
- Chen S, Osaki N, Shimotoyodome A. Green tea catechins enhance norepinephrine-induced lipolysis via a protein kinase A-dependent pathway in adipocytes. Biochem Biophys Res Commun 2015; 461(1): 1–7. doi: 10.1016/j.bbrc.2015.03.158
- Farmer SR. Transcriptional control of adipocyte formation. Cell Metab 2006; 4(4): 263–73. doi: 10.1016/j.cmet.2006.07.001
- Ahmad B, Serpell CJ, Fong IL, Wong EH. Molecular mechanisms of adipogenesis: the anti-adipogenic role of AMP-activated protein kinase. Front Mol Biosci 2020; 7: 76. doi: 10.3389/fmolb.2020.00076
- Strable MS, Ntambi JM. Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol 2010; 45(3): 199–214. doi: 10.3109/10409231003667500
- Kim SJ, Tang T, Abbott M, Viscarra JA, Wang Y, Sul HS. AMPK phosphorylates Desnutrin/ATGL and hormone-sensitive lipase to regulate lipolysis and fatty acid oxidation within adipose tissue. Mol Cell Biol 2016; 36(14): 1961–76. doi: 10.1128/MCB.00244-16
- Wu L, Zhang L, Li B, Jiang H, Duan Y, Xie Z, et al. AMP-Activated Protein Kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front Physiol 2018; 9: 122. doi: 10.3389/fphys.2018.00122
- Jiang L, Wang Q, Yu Y, Zhao F, Huang P, Zeng R, et al. Leptin contributes to the adaptive responses of mice to high-fat diet intake through suppressing the lipogenic pathway. PLoS One 2009; 4(9): 6884. doi: 10.1371/journal.pone.0006884
- Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, et al. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 2010; 48(3): 937–43. doi: 10.1016/j.fct.2010.01.003
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to SNF Swedish Nutrition Foundation. Read the full Copyright- and Licensing Statement.