Extract mixture of plants (OXYLIA) inhibits fat accumulation by blocking FAS-related factors and promoting lipolysis via cAMP-dependent PKA activation

  • Seong-Hoo Park Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
  • Sun-jung Baek Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
  • Minhee Lee Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
  • Hyun-A Shin ACROM CO., LTD. Suwon, Republic of Korea
  • Hye jin Lee ACROM CO., LTD. Suwon, Republic of Korea
  • Ok-Kyung Kim Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea
  • Jeongmin Lee Department of Medical Nutrition, Kyung Hee University, Yongin, Republic of Korea
Keywords: obesity, lipolysis, lipogenesis, olive, rosemary, black bean

Abstract

Background: Obesity is characterized by an imbalance between energy intake and expenditure, leading to the excessive accumulation of triglycerides in adipose tissue.

Objective: This study investigated the potential of Oxylia to prevent obesity in mice fed with a high-fat diet (HFD).

Design: C57BL/6J mice were fed with one of the following five diets – AIN93G normal diet (normal control), 60% (HFD; control), HFD containing metformin at 40 mg/kg body weight (b.w.) (Met; positive control), HFD containing Oxylia at 30 mg/kg b.w. (O30), or HFD containing Oxylia at 60 mg/kg b.w. (O60) – for 15 weeks.

Results: Mice under an HFD supplemented with Oxylia had decreased body weight gain, adipose tissue weight, and adipose tissue mass. In addition, triglyceride (TG), total cholesterol, and VLDL/LDL cholesterol levels were lower in the O60 groups than in the HFD-fed control group. Moreover, Oxylia supplementation decreased the expression of adipogenesis-related mRNAs and lipogenesis-related proteins while increasing the expression of lipolysis-related proteins in white adipose tissue and thermogenesis-related proteins in brown adipose tissue.

Conclusions: These findings suggest that Oxylia has potential as a functional food ingredient for the prevention and treatment of obesity and related metabolic disorders.

Downloads

Download data is not yet available.

References


1.
Angel A. Pathophysiology of obesity. Can Med Assoc J 1974; 110: 540–548.


2.
Frühbeck G, Toplak H, Woodward E, Yumuk V, Maislos M, Oppert JM. Obesity: the gateway to ill health – an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts 2013; 6: 117–120. doi: 10.1159/000350627


3.
Roth CL, Jain V. Rising obesity in children: a serious public health concern. Indian J Pediatr 2018; 85: 461–462. doi: 10.1007/s12098-018-2639-7


4.
Ambele MA, Dhanraj P, Giles R, Pepper MS. Adipogenesis: a complex interplay of multiple molecular determinants and pathways. Int J Mol Sci 2020; 21: 4283. doi: 10.3390/ijms21124283


5.
Lelliott C, Vidal-Puig AJ. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. Int J Obes Relat Metab Disord 2004; 4: 22–28. doi: 10.1038/sj.ijo.0802854


6.
Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9: 367–377. doi: 10.1038/nrm2391


7.
Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin re-sistance and type 2 diabetes. Endocr Rev 2002; 23: 201–229. doi: 10.1210/edrv.23.2.0461


8.
Ruan X, Li Z, Zhang Y, Yang L, Pan Y, Wang Z, et al. Apolipoprotein A-I possesses an anti-obesity effect associated with increase of energy expenditure and up-regulation of UCP1 in brown fat. J Cell Mol Med 2011; 15: 763–772. doi: 10.1111/j.1582-4934.2010.01045.x


9.
Filippatos TD, Derdemezis CS, Gazi IF, Nakou ES, Mikhailidis DP, Elisaf MS. Orlistat-associated adverse effects and drug interactions: a critical review. Drug Saf 2008; 31(1): 53–65. doi: 10.2165/00002018-200831010-00005


10.
Proietto J. Medicines for long-term obesity management. Aust Prescr 2022; 45(2): 38–40. doi: 10.18773/austprescr.2022.009


11.
Santos ACNA, Duarte de Souza ML, Machado AM, Kümmel Duarte C. Olive oil and body fat: a systematic review with meta-analysis. Food Funct 2023; 14: 5516–5536. doi: 10.1039/d3fo00488k


12.
Harach T, Aprikian O, Monnard I, Moulin J, Membrez M, Béolor JC, et al. Rosemary (Rosmarinus officinalis L.) leaf extract limits weight gain and liver steatosis in mice fed a high-fat diet. Planta Med 2010; 76: 566–571. doi: 10.1055/s-0029-1240612


13.
Udani J, Singh BB. Blocking carbohydrate absorption and weight loss: a clinical trial using a proprietary fractionated white bean extract. Altern Ther Health Med 2007; 13: 32–37.


14.
Micol V, Blanes C, Caturla N, Laporta O, Edeas B. Synergetic mixed nutritional ingredients enhance and maintain weight loss in humans. Agro Food Indust Hi Tech 2005; 16: XIII.


15.
Li X, Ren Y, Chang K, Wu W, Griffiths HR, Lu S, et al. Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front Immunol 2023; 14: 1153915. doi: 10.3389/fimmu.2023.1153915


16.
Jang J, Jung Y, Seo SJ, Kim SM, Shim YJ, Cho SH, et al. Berberine activates AMPK to suppress proteolytic processing, nuclear translocation and target DNA binding of SREBP-1c in 3T3-L1 adipocytes. Mol Med Rep 2017; 15: 4139–4147. doi: 10.3892/mmr.2017.6513


17.
Li Y, Li Z, Ngandiri DA, Perez ML, Wolf A, Wang Y. The molecular brakes of adipose tissue lipolysis. Front Physiol 2022; 13: 826314. doi: 10.3389/fphys.2022.826314


18.
Hadrich F, Mahmoudi A, Chamkha M, Isoda H, Sayadi S. Olive leaves extract and oleuropein improve insulin sensitivity in 3T3-L1 cells and in high-fat diet-treated rats via PI3K/AkT signaling pathway. Oxid Med Cell Longev. 2023; 2023: 6828230. doi: 10.1155/2023/6828230


19.
Jung YC, Kim HW, Min BK, Cho JY, Son HJ, Lee JY, et al. Inhibitory effect of olive leaf extract on obesity in high-fat diet-induced mice. In Vivo 2019; 33: 707–715. doi: 10.21873/invivo.11529


20.
Shen Y, Song SJ, Keum N, Park T. Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis. Evid Based Complement Alternat Med 2014; 2014: 971890. doi: 10.1155/2014/971890


21.
Zhao Y, Sedighi R, Wang P, Chen H, Zhu Y, Sang S. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice. J Agric Food Chem 2015; 63: 4843–4852. doi: 10.1021/acs.jafc.5b01246


22.
Kwon SH, Ahn IS, Kim SO, Kong CS, Chung HY., Do MS, et al. Anti-obesity and hypolipidemic effects of black soybean anthocyanins. J Med Food 2007; 10: 552–55. doi: 10.1089/jmf.2006.147


23.
Kim JB, Sarraf P, Wright M, Yao KM, Mueller E, Solanes G, et al. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 1998; 101: 1–9. doi: 10.1172/JCI1411


24.
Kim JH, Kim OK, Yoon HG, Park J, You Y, Kim K, et al. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats. Food Nutr Res 2016; 60: 30428. doi: 10.3402/fnr.v60.30428


25.
Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res 2009; 50: 138–143. doi: 10.1194/jlr.R800079-JLR200


26.
Markussen LK, Rondini EA, Johansen OS, Madsen JGS, Sustarsic EG, Marcher AB, et al. Lipolysis regulates major transcriptional programs in brown adipocytes. Nat Commun 2022; 13: 3956. doi: 10.1038/s41467-022-31525-8


27.
Liu H, Xu Y, Hu F. AMPK in the ventromedial nucleus of the hypothalamus: a key regulator for thermogenesis. Front Endocrinol (Lausanne) 2020; 11: 578830. doi: 10.3389/fendo.2020.578830


28.
Hill JO. Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev 2006; 27: 750–761. doi: 10.1210/er.2006-0032


29.
Racette SB, Deusinger SS, Deusinger RH. Obesity: overview of prevalence, etiology, and treatment. Phys Ther 2003; 83: 276–288. https://doi.org/10.1093/ptj/83.3.276


30.
Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis 2010; 33: 469–477. doi: 10.1007/s10545-010-9061-2


31.
Steensels S, Ersoy BA. Fatty acid activation in thermogenic adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864: 79–90. https://doi.org/10.1016/j.bbalip.2018.05.008


32.
Sun X, Zemel MB. Role of uncoupling protein 2 (UCP2) expression and 1alpha, 25-dihydroxyvitamin D3 in modulating adipocyte apoptosis. FASEB J 2004; 18: 1430–1432. doi: 10.1096/fj.04-1971fje
Published
2024-03-12
How to Cite
Park S.-H., Baek S.- jung, Lee M., Shin H.-A., Lee H. jin, Kim O.-K., & Lee J. (2024). Extract mixture of plants (OXYLIA) inhibits fat accumulation by blocking FAS-related factors and promoting lipolysis via cAMP-dependent PKA activation. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.10180
Section
Original Articles

Most read articles by the same author(s)